Research Portal

Displaying 1 – 10 of 10 results

Filters

Geoscience » Source Rock & Depositional Environment

Tracking Mesozoic Paleoclimate Events on the Nova Scotia Margin: Integrating Biostratigraphic Legacy Data with New Stable Carbon Isotope Analyses (part of the PAGEO research program)

November 2020 – November 2021

This study will obtain empirical evidence for climatic perturbations and regional changes in oceanic circulation patterns by (1) acquiring an extensive dataset of stable isotope measurements from key wells located in the area of interest, (2) integrating these measurements with existing quantitat

Geoscience » Source Rock & Depositional Environment

Analysis of Palaeoenvironment, Palaeoclimate and Palaeooceanographic Models to Predict Distribution of Source Rocks Offshore Nova Scotia (part of the PAGEO research program)

November 2020 – June 2021

The objective of this work is to predict the distribution of Tithonian and early Jurassic (Toarcian, Pliensbachian, Sinemurian, Hettangian) source rocks based on biogeographic principles derived from modern environments, and palaeoenvironmental interpretations derived from palaeogeographic mappin

Development of Acoustic Doppler Aquatic Animal Monitoring (ADAAM) for application to marine life movement in high-energy tidal channels

March 2018 – February 2021

Acoustic Doppler Current Profilers (ADCPs) are a standard tool used for measuring ocean currents.

Geoscience » Source Rock & Depositional Environment

Sequence stratigraphy, titania diagenesis and relationship to petroleum systems modeling

October 2018 – January 2021

This project examines different forms of titania (TiO2) minerals to confirm the relationship between late diagenetic titania (i.e., titania minerals transformed under the heat and pressure of sedimentary processes) and hydrocarbon migration and thus assess the use of titania polymorphs as “pathfi

Cape Breton Tidal Energy Resource Assessment

November 2011 – October 2012

In support of the Strategic Environmental Assessment (SEA) for the Cape Breton Region, inclusive of the Bras d’Or Lakes, Acoustic Doppler Current Profiler (ADCP) units were deployed at Barra Strait, Seal Island Bridge and Carey Point to collect tidal flow information.  Potential sites for tidal e

3-D Acoustic Tracking of Fish, Sediment-Laden Ice and Large Wood Debris in the Minas Passage of the Bay of Fundy

October 2009 – December 2011

Researchers used VEMCO animal tracking technology to complete in-situ testing of the path, depth and velocity of fish and objects passing through the Minas Passage.

Geoscience » Seismic & Marine Sound

Physics of the Interaction between a Crab and a Seismic Test Pulse – Development of a Mathematical Model and Testing of Model via Simulation

June 2009 – September 2011

Experimental attempts to establish whether seismic testing has any impact on crabs and the crab fishery have been hampered by a lack of theoretical work on the subject.

Geoscience » Seismic & Marine Sound

Feasibility of a Marine Vibroseis System to Minimize Potential Impacts of Seismic Surveying on Commercial Marine Invertebrates

May 2010 – May 2011

Marine vibroseis (a sound generating system that uses a large oscillating mass to emit a range of frequencies) offers an alternative to air-gun seismic sources and may have fewer environmental effects on marine biota.

Geoscience » Play Fairway Analyses Atlases 2010–Present

Play Fairway Analysis Atlas

January 2011

The original Play Fairway Analysis completed in 2011 identified rich hydrocarbon potential offshore Nova Scotia, with unrisked 120TCF of gas and 8Bbbls of oil in place. This potential has diverse characteristics and scales, which are described in detail in the Atlas.

Geoscience » Source Rock & Depositional Environment

Development of Marginal Fields in Offshore Nova Scotia – Phase 1 & 2

June 2009 – June 2010

The reduction in cost of a marginal development is largely attributed to the potential reduction in size of the offshore installation. These types of installations are referred to as ‘minimal platforms’.