Research Portal

Displaying 1 – 6 of 6 results

Filters

How Does Sound Travel in High Energy Environments? Effectiveness of Acoustic Monitoring Systems and Turbine Audibility Assessment

April 2017 – December 2020

The researchers are designing and implementing a long-term acoustic monitoring program to support tidal energy development in the Bay of Fundy. Specialized acoustic instrumentation was deployed for a two-month period in Grand Passage to advance understanding how turbulence affects the ability to

Reducing Costs of Tidal Energy through a Comprehensive Characterization of Turbulence in Minas Passage

October 2017 – March 2020

Turbulence is a significant issue at every site being considered for in-stream tidal energy development.

Geoscience » Source Rock & Depositional Environment

Piston Coring Geochemistry Program

January 2015 – January 2020

Confirming the presence of hydrocarbons from an oil-prone Jurassic age source rock would encourage exploration in the deep water portion of Nova Scotia’s offshore.

Assessment of Hydrodynamic Impacts throughout the Bay of Fundy and Gulf of Maine due to Tidal Energy Extraction by Tidal Lagoons

January 2010 – December 2011

The researchers extended existing hydrodynamic models of tidal flows in the Bay of Fundy to simulate the presence and operation of a tidal lagoon project located in the Minas Basin.

Geoscience » Seismic & Marine Sound

Feasibility of a Marine Vibroseis System to Minimize Potential Impacts of Seismic Surveying on Commercial Marine Invertebrates

May 2010 – May 2011

Marine vibroseis (a sound generating system that uses a large oscillating mass to emit a range of frequencies) offers an alternative to air-gun seismic sources and may have fewer environmental effects on marine biota.

Near Field Effects of Tidal Power Extraction on Extreme Events and Coastline Integrity in the Bay of Fundy

January 2010 – March 2011

Researchers quantified the near-field effects of power extraction on the resulting effects of extreme storm events and coastline integrity by implementing a spectral wave model to numerically simulate wave transformation for tidal current conditions with and without turbines.