Research Portal

Displaying 1 – 7 of 7 results

Filters

Geoscience » Seismic & Marine Sound

Test Snow Crab Response to Seismic Stress

February 2012 – September 2013

There is concern in Atlantic Canada that there is insufficient information on the potential effects of seismic noise on snow crab.

Turbulence and Drag in a High Reynolds Number Tidal Passage Targeted for In-Stream Tidal Power

August 2013

Results are presented from an investigation of turbulence and bottom drag carried out in Grand Passage, lower Bay of Fundy.

Passive Acoustic Monitoring of Cetacean Activity Patterns and Movements Pre- and Post-deployment of TISEC devices in Minas Passage

June 2011 – July 2013

This project aimed to conduct pre- and post- in-stream tidal energy device deployment assessments of marine mammal activity and to assess the potential risk for interaction with turbine infrastructure.

Community Engagement Strategies & Resource Guide To Support Small-Scale Tidal Power in Nova Scotia

March – July 2013

Community engagement strategies and a resource guide for stakeholders involved in marine renewable energy will support the success of marine renewable energy development in Nova Scotia.

Southwest Nova Scotia Tidal Energy Resource Assessment

June 2013

This is an assessment of the in-stream tidal resources in Southwest Nova Scotia consisting of Shelburne, Yarmouth and Digby Counties.

Community and Business Toolkit for Tidal Energy Development

November 2011 – March 2013

This toolkit covers the science, technology, business and community aspects of tidal energy development in Nova Scotia, effectively integrating the applied, natural and social sciences. It can serve as a model for future applied interdisciplinary work on tidal energy and marine renewables.

Cross Coupling between Device Level CFD and Oceanographic Models Applied to Multiple TISECs in Minas Passage

October 2011 – January 2013

This project aimed to develop a link between oceanographic computer models and Computational Fluid Dynamics (CFD) models in order to improve state-of-the-art modelling techniques used for resource assessments and tidal turbine siting for both single and multiple in-stream tidal energy devices.