Research Portal

Displaying 1 – 6 of 6 results

Filters

Turbulence Dissipation Rates from Horizontal Velocity Profiles at Mid-Depth in Fast Tidal Flows

December 2017

This study characterizes the turbulence in a tidal channel in the Bay of Fundy that has been identified for development as a tidal power resource.

Nova Scotia Energy Sector – Targeted Export Market Analysis

February – October 2017

As part of Nova Scotia Department of Energy and Mines’ (NSDEM) mandate to investigate economic opportunities for Nova Scotia technology developers and supply chain service providers, a global energy market analysis was commissioned.

High-Resolution Numerical Model Resource Assessment of Minas Passage, Bay of Fundy

January 2017

Two numerical models developed by the Acadia Tidal Energy Institute are described. The models simulate the tidal flow in the Bay of Fundy, and in particular the Minas Passage. The models have different grid resolution, one suitable for site assessment and one suitable for resource assessment.

Passive Acoustic Monitoring of Cetacean Activity Patterns and Movements Pre- and Post-deployment of TISEC devices in Minas Passage

June 2011 – July 2013

This project aimed to conduct pre- and post- in-stream tidal energy device deployment assessments of marine mammal activity and to assess the potential risk for interaction with turbine infrastructure.

Community and Business Toolkit for Tidal Energy Development

November 2011 – March 2013

This toolkit covers the science, technology, business and community aspects of tidal energy development in Nova Scotia, effectively integrating the applied, natural and social sciences. It can serve as a model for future applied interdisciplinary work on tidal energy and marine renewables.

Cross Coupling between Device Level CFD and Oceanographic Models Applied to Multiple TISECs in Minas Passage

October 2011 – January 2013

This project aimed to develop a link between oceanographic computer models and Computational Fluid Dynamics (CFD) models in order to improve state-of-the-art modelling techniques used for resource assessments and tidal turbine siting for both single and multiple in-stream tidal energy devices.