Research Portal

Displaying 1 – 7 of 7 results

Filters

Geoscience » Georges Bank Research & Data

Science and Socio-economic Review of the Georges Bank Prohibition Area 2020-2021

June – December 2021

Georges Bank is a large submarine platform located at the edge of the Atlantic continental shelf between Cape Cod and Nova Scotia. The Georges Bank Prohibition Area covers a significant portion of Georges Bank and is located on the Canadian side of the Canada-United States maritime boundary.

Direct Use of Geothermal Heat in Nova Scotia

August – December 2021

Objectives:

Assessing the Economic Impacts of Developing the Port of Sheet Harbour Into an Offshore Wind Hub

February – March 2021

Currently, multiple OSW projects off the Northeast US are under development. The OSW capacity in the US is forecast to grow significantly in the next decade with approximately 11 GW already contracted to be installed over the next years.

Net-Zero Future: A Feasibility Study of Hydrogen Production, Storage, Distribution and Use in The Maritimes - NL Extension

January – March 2021

This study investigated what role hydrogen can play in Newfoundland and Labrador’s future energy system.

Stimulating Offshore Wind Development in Nova Scotia

January – March 2021

To attract Offshore Wind (OSW) investment to Nova Scotia, it is important to understand the development in other jurisdictions. For example, Europe has developed, and the USA are developing, an active OSW industry encompassing the entire OSW supply chain.

Passive Acoustic Monitoring of Cetacean Activity Patterns and Movements Pre- and Post-deployment of TISEC devices in Minas Passage

June 2011 – July 2013

This project aimed to conduct pre- and post- in-stream tidal energy device deployment assessments of marine mammal activity and to assess the potential risk for interaction with turbine infrastructure.

Cross Coupling between Device Level CFD and Oceanographic Models Applied to Multiple TISECs in Minas Passage

October 2011 – January 2013

This project aimed to develop a link between oceanographic computer models and Computational Fluid Dynamics (CFD) models in order to improve state-of-the-art modelling techniques used for resource assessments and tidal turbine siting for both single and multiple in-stream tidal energy devices.