Research Portal

Displaying 1 – 5 of 5 results

Filters

Renewable Energy » Tidal Resource Characterization and Modelling

Drones and Drifters – The Great Pumpkin Race

October 2016 – July 2017

This project tested and developed a new low-cost approach to collecting oceanographic measurements for use in tidal initial site assessments. The plan combines one of the oldest tools in oceanography, the drifter, with one of the newest, the drone.

Renewable Energy » Tidal Resource Characterization and Modelling

Turbulence in Grand Passage Nova Scotia: Measures of Intermittency

April – December 2016

Turbulence research is very important to advancing the in-stream tidal energy sector, however turbulence in general is not well understood.  Measurement at prospective turbine locations is essential prior to development, given the high degree of spatial variability between sites.

Renewable Energy » Tidal Resource Characterization and Modelling

Spectral and Structure Function Estimates of Turbulence Dissipation Rates in a High Flow Tidal Channel Using Broadband ADCPs

January 2016

Spectral and structure function methods are implemented to compute the dissipation rate, ε, from broadband, diverging-beam, acoustic Doppler current profiler (ADCP) data collected at four sites in a high-flow tidal channel.

Renewable Energy » Seabed, Sediment, and Benthic

Seasonal Erodibility of Sediment in the Upper Bay of Fundy

February 2012 – January 2015

This project developed methods for studying sedimentation to the macro-tidal flats of the upper Bay of Fundy. The researchers looked at seasonal variation in the erodibility of sediments in tidal creeks and flats using a Gust Erosion Chamber and repeated grain size surveys.

Renewable Energy » Tidal Resource Characterization and Modelling

Tidal Energy Resource Assessment Map for Nova Scotia

March – October 2012

This project used numerical simulations and theoretical calculations to predict not only the power that can be extracted from the flow through a passage but also the reduction in flow through the passage.