Research Portal

Displaying 21 – 26 of 26 results

Filters

Innovative Solutions for De-risking Species Detections in Tidal Energy Environmental Effects Monitoring Programs

April 2018 – March 2019

With collaboration from Genome Atlantic, this research project is using a new environmental DNA technology to rapidly identify and determine abundance of different fish species in high-flow marine conditions. Experiments were conducted at Dalhousie University’s Aquatron facility. N

Real-Time, Targeted Imaging of Turbine-Marine Life Interactions

March 2017 – February 2019

The research goal is to redesign and validate a dynamic mount to improve targeted real-time imaging of marine life in the near-field zone of a tidal turbine. The adjustable mount will enable imaging sensors to be aimed directly facing the tidal turbine.

Numerical Modeling of Tidal Turbine Behaviour under Real Turbulent Tidal Flow Conditions

December 2015 – December 2016

Researchers investigated and numerically quantified the behaviour of a tidal turbine under turbulent unsteady tidal flow, using flow data collected in the lower Bay of Fundy (Digby area).

Nova Scotia Tidal Research Summary Report – Researching Tidal Energy – Marine Life: The Nova Scotia Experience

October 2015 – May 2016

This report looks at the extensive tidal energy-related research undertaken in the Bay of Fundy over a 10 year period beginning in 2005.

On-line Interactive GIS Map Platform: An Enabling Initiative for the Emerging Tidal Energy Industry

April 2015 – April 2016

A proof-of-concept Geographic Information System (GIS) platform was developed aiming at building a decision-making tool that integrates complex spatial information of importance to the tidal energy industry while also being scalable, flexible and accessible.  The platform was built on open source

Characterizing Tidal Flows and Turbine Power Production in Petit Passage using Oceanographic and CFD Models

September 2015 – March 2016

The goal of this project was to identify potential turbine deployment locations in Petit Passage Nova Scotia, using computational fluid dynamics (CFD) and finite volume coastal ocean models (FVCOM).