Research Portal

Displaying 11 – 17 of 17 results

Filters

Integrated Active and Passive Acoustic System for Environmental Monitoring (ISEM)

August 2015 – May 2019

The project team will develop a novel environmental monitoring system that integrates data analysis software and active and passive acoustic sensors to provide real-time tracking of fish and marine mammals in high energy sites.

Remote Acoustic Measurements of Turbulence in High-Flow Tidal Channels during High Wave Conditions

April 2018 – April 2019

Many of the high-flow tidal channels targeted for worldwide in-stream hydro-electric development are impacted by surface gravity waves incident from a large exterior basin (e.g. the Bay of Fundy/Gulf of Maine/North Atlantic).

STREEM: Sensor Testing Research for Environmental Effects Monitoring

October 2018 – March 2019

The research goal was to enhance understanding on sensor performance and sensor-to-sensor interactions to inform environmental effects monitoring (EEM) protocol for future tidal turbine deployments.

Innovative Solutions for De-risking Species Detections in Tidal Energy Environmental Effects Monitoring Programs

April 2018 – March 2019

With collaboration from Genome Atlantic, this research project is using a new environmental DNA technology to rapidly identify and determine abundance of different fish species in high-flow marine conditions. Experiments were conducted at Dalhousie University’s Aquatron facility. N

Optimized Combinations of Tidal, Wind and Solar Electricity Generation with Energy Storage to Meet Nova Scotia’s Electrical Demand

August 2018 – March 2019

Wind, solar and tidal-generated electricity each have different, but potentially complimentary, cyclic times.

Geoscience » Source Rock & Depositional Environment

Mid Cretaceous Sand Supply to Offshore SW Nova Scotia: Tectonic Diversion of Labrador Rivers during Naskapi Member Deposition

September 2015 – September 2017

This study tests the hypothesis that tectonic diversion of Labrador rivers during the Aptian resulted in sand supply through the Bay of Fundy to the Shelburne sub-basin, allowing shales to accumulate farther east in the Scotian Basin.

Going with the Flow: Advancement of Drifting Platforms for use in Tidal Energy Site Assessment & Environmental Monitoring

April 2015 – August 2017

This research project aimed to apply a simple and low cost philosophy to ocean observation by developing an inexpensive low-profile surface drifter for use in initial assessment of potential tidal energy development opportunities.  The project addressed limitations in the existing drifter design