Research Portal

Displaying 1 – 8 of 8 results

Filters

Geoscience » Source Rock & Depositional Environment

Microbial Genomics for De-Risking Offshore Oil and Gas Exploration in Nova Scotia

April 2016 – March 2021

The purpose of this $6.5M project is to develop, validate and deploy different genomics-based bioassay tools for offshore prospecting on the Scotian Slope.

Geoscience » Source Rock & Depositional Environment

Sequence stratigraphy, titania diagenesis and relationship to petroleum systems modeling

October 2018 – January 2021

This project examines different forms of titania (TiO2) minerals to confirm the relationship between late diagenetic titania (i.e., titania minerals transformed under the heat and pressure of sedimentary processes) and hydrocarbon migration and thus assess the use of titania polymorphs as “pathfi

Geoscience » Source Rock & Depositional Environment

Predictive Modelling of Sandstone Reservoir Quality in the Scotian Basin

May 2016 – December 2018

This project uses existing knowledge of inferred drainage basin areas and paleoclimate to model multiple river inputs to the Scotian Basin. The modelled sedimentary succession is compared with actual sediment thicknesses in the basin.

Feasibility Study: Tidal Sector Service Barge/Drydock

April – November 2018

The study investigates the feasibility of developing a generic, shared-use, multi-function turbine transport deployment and retrieval barge/drydock for use by the Nova Scotia tidal energy sector.

Analysis of Tidal Turbine Mooring Systems in Turbulent Flows Applying the (Wind Industry) FAST Simulation Tool and DSA ProteusDS Software

March – September 2018

For floating tidal turbine platforms, the turbine forces and resulting platform motions have a direct impact on the lifetime of its moorings and cables. This means the tidal sector must predict accurate tidal turbine loading on floating platforms to determine mooring life and cable longevity.

Using Dry Ports to Support Nova Scotia’s Tidal Industry

March – June 2018

This study investigates two Nova Scotia “dry ports” and their potential in supporting the Bay of Fundy region’s emergent tidal energy industry. The term ‘dry port’ refers to a port where the harbour bottom is mainly exposed at low tide.

Geoscience » Spill Preparedness

Advanced Coastal Mapping to Support Hydrodynamic Modelling

April 2016 – June 2018

Nova Scotia’s Atlantic coast exhibits a variety of shorelines that may be vulnerable to contamination in the event of an offshore oil spill. In turn, variable currents, changing water levels, shoals, and exposed seaside conditions make effective spill response difficult for tidal inlets.

Tidal Energy: Strategic Environmental Assessment – Bay of Fundy (Phase I)

April 2018

This Strategic Environmental Assessment (SEA) provides advice on whether, when and under what conditions tidal energy demonstration and commercial projects should be allowed in the Bay of Fundy.