Research Portal

Displaying 1 – 6 of 6 results

Filters

Geoscience » Source Rock & Depositional Environment

Predictive Modelling of Sandstone Reservoir Quality in the Scotian Basin

May 2016 – December 2018

This project uses existing knowledge of inferred drainage basin areas and paleoclimate to model multiple river inputs to the Scotian Basin. The modelled sedimentary succession is compared with actual sediment thicknesses in the basin.

Geoscience » Spill Preparedness

Advanced Coastal Mapping to Support Hydrodynamic Modelling

April 2016 – June 2018

Nova Scotia’s Atlantic coast exhibits a variety of shorelines that may be vulnerable to contamination in the event of an offshore oil spill. In turn, variable currents, changing water levels, shoals, and exposed seaside conditions make effective spill response difficult for tidal inlets.

Turbulence in Grand Passage Nova Scotia: Measures of Intermittency

April – December 2016

Turbulence research is very important to advancing the in-stream tidal energy sector, however turbulence in general is not well understood.  Measurement at prospective turbine locations is essential prior to development, given the high degree of spatial variability between sites.

Geoscience » Play Fairway Analyses Atlases 2010–Present

Central Scotian Slope Atlas (2016)

January – August 2016

The objective of this project was to identify and technically evaluate any significant exploration leads and prospects in the area of interest.  The study used integrated 3D basin modelling analysis to assess the timing of maturation of source rocks, transformation ratios, hydrocarbon entrapment,

Geoscience » Source Rock & Depositional Environment

Direct Hydrocarbon Indicator (DHI) Mapping, Offshore Nova Scotia

January – May 2016

This project reviewed existing seismic data to identify and catalogue Direct Hydrocarbon Indicators (DHIs) in offshore Nova Scotia, particularly in the Laurentian and Georges Bank Sub-basins.

Spectral and Structure Function Estimates of Turbulence Dissipation Rates in a High Flow Tidal Channel Using Broadband ADCPs

January 2016

Spectral and structure function methods are implemented to compute the dissipation rate, ε, from broadband, diverging-beam, acoustic Doppler current profiler (ADCP) data collected at four sites in a high-flow tidal channel.