Research Portal

Displaying 1 – 10 of 13 results

Filters

The Vectron2 Project: Turbulence Measurements for the In-stream Tidal Energy Industry

March 2019 – November 2021

The Vectron is a new sensor used for measuring turbulence velocity within a tidal turbine’s swept area.  The Vectron has been successfully prototyped, where next steps are to take the technology to the ‘industry-ready’ stage of development and the focus of this project.

Real-Time Detection of Marine Mammals in High Flow Environments

May 2019 – September 2021

The project research goal is to design and test an innovative acoustic sensor system that will feature a wireless magneto-inductive (MI) communications link – to alert users in real time of the presence and location of marine mammals in high noise tidal environments.  The research entails a field

The Pathway Program: Validating reliable environmental monitoring for ocean energy projects

April 2019 – October 2021

OERA created The Pathway Program to solve a critical problem impeding the in-stream tidal energy industry: a lack of reliable and validated technologies and methods to monitor and report fish-turbine interactions in high-flow, highly turbulent environments, leading to regulatory uncertainty and i

Environmental Monitoring System Development

November 2019 – April 2021

The Pathway Program - Technology Validation: Echosouders & Passive Acoustic Monitoring Device

Quantifying Fish-Turbine Interactions Using New VEMCO Tagging Technology

October 2017 – December 2019

This project tested innovative acoustic fish tagging technology made by VEMCO, a Nova Scotian engineering technology company. Their acoustic telemetry tags are expected to be more effective in noisy, high-current environments like the Minas Passage.

Integrating Hydro-acoustic Approaches to Predict Fish Interactions with In-Stream Tidal Turbines

October 2017 – December 2019

Understanding exactly how fish interact with tidal turbines is still a critical knowledge gap for the tidal energy sector.

Multipurpose X-Band Marine Radar Network for the Minas Passage

January – November 2019

Marine X-band radar locates vessels and features, including coastlines and buoys.  It filters distracting signals (eg.

Developing Enhanced Marine Operations (DEMO) in High Flow Tidal Environments

October 2017 – October 2019

Conventional subsea remotely operated vehicles (ROVs) perform poorly in currents exceeding 1.5 m/s. This is a key operating limitation in the success and cost of marine operations in the Bay of Fundy, where current speeds reach 5 m/s.

Application of (Low-Cost) Drifters with Suspended Hydrophone Arrays to Assess Harbour Porpoise Use of the Water Column and Spatial Overlap with MRE Devices in the Minas Passage

October 2017 – April 2019

The project investigated the use of a new low-cost drifter technology to monitor the activity and depth distribution of harbour porpoises frequenting the Minas Passage and Minas Channel.

Quantifying Demographics and Monitoring Movement of American Lobster in the Minas Passage and Basin

October 2017 – March 2019

The project consists of lobster fishing in Minas Passage during the fall lobster season to collect, assess and tag lobsters in this area, then fishing in Minas Basin from April to May to assess the spawning characteristics of lobster tagged the previous fall, then returning to Minas Passage to fi