Research Portal

Displaying 1 – 10 of 11 results

Filters

Geoscience » Georges Bank Research & Data

Science and Socio-economic Review of the Georges Bank Prohibition Area 2020-2021

June – December 2021

Georges Bank is a large submarine platform located at the edge of the Atlantic continental shelf between Cape Cod and Nova Scotia. The Georges Bank Prohibition Area covers a significant portion of Georges Bank and is located on the Canadian side of the Canada-United States maritime boundary.

The Vectron2 Project: Turbulence Measurements for the In-stream Tidal Energy Industry

March 2019 – November 2021

The Vectron is a new sensor used for measuring turbulence velocity within a tidal turbine’s swept area.  The Vectron has been successfully prototyped, where next steps are to take the technology to the ‘industry-ready’ stage of development and the focus of this project.

Turbulence and Drag in a High Reynolds Number Tidal Passage Targeted for In-Stream Tidal Power

August 2013

Results are presented from an investigation of turbulence and bottom drag carried out in Grand Passage, lower Bay of Fundy.

Passive Acoustic Monitoring of Cetacean Activity Patterns and Movements Pre- and Post-deployment of TISEC devices in Minas Passage

June 2011 – July 2013

This project aimed to conduct pre- and post- in-stream tidal energy device deployment assessments of marine mammal activity and to assess the potential risk for interaction with turbine infrastructure.

Cross Coupling between Device Level CFD and Oceanographic Models Applied to Multiple TISECs in Minas Passage

October 2011 – January 2013

This project aimed to develop a link between oceanographic computer models and Computational Fluid Dynamics (CFD) models in order to improve state-of-the-art modelling techniques used for resource assessments and tidal turbine siting for both single and multiple in-stream tidal energy devices.

Tidal Energy Resource Assessment Map for Nova Scotia

March – October 2012

This project used numerical simulations and theoretical calculations to predict not only the power that can be extracted from the flow through a passage but also the reduction in flow through the passage.

Assessing the Far Field Effects of Tidal Power Extraction on the Bay of Fundy, Gulf of Maine and Scotian Shelf

January 2010 – April 2012

The Bay of Fundy and Gulf of Maine system has a natural resonant period very close to the main semi-diurnal lunar tide. This results in the world’s highest tides and strong tidal currents in the Bay of Fundy, particularly in the Minas Channel and Minas Basin.

Assessment of Hydrodynamic Impacts throughout the Bay of Fundy and Gulf of Maine due to Tidal Energy Extraction by Tidal Lagoons

January 2010 – December 2011

The researchers extended existing hydrodynamic models of tidal flows in the Bay of Fundy to simulate the presence and operation of a tidal lagoon project located in the Minas Basin.

Assessment of the Potential of Tidal Power from Minas Passage and Minas Basin

October 2009 – September 2011

This project estimated the power potential of the tides and tidal currents in the Minas Basin and Minas Channel regions of the Bay of Fundy.

Near Field Effects of Tidal Power Extraction on Extreme Events and Coastline Integrity in the Bay of Fundy

January 2010 – March 2011

Researchers quantified the near-field effects of power extraction on the resulting effects of extreme storm events and coastline integrity by implementing a spectral wave model to numerically simulate wave transformation for tidal current conditions with and without turbines.