Research Portal

Displaying 1 – 10 of 13 results

Filters

Going with the Flow II: Using Drifters to Address Uncertainties in the Spatial Variation of Tidal Flows

October 2017 – June 2018

Drifters are one of the oldest, simplest and most reliable methods for measuring ocean currents. Drifters also provide a simple, low risk platform from which to gather acoustic information along flow streamlines or ‘drift tracks’.

Turbulence Dissipation Rates from Horizontal Velocity Profiles at Mid-Depth in Fast Tidal Flows

December 2017

This study characterizes the turbulence in a tidal channel in the Bay of Fundy that has been identified for development as a tidal power resource.

Going with the Flow: Advancement of Drifting Platforms for use in Tidal Energy Site Assessment & Environmental Monitoring

April 2015 – August 2017

This research project aimed to apply a simple and low cost philosophy to ocean observation by developing an inexpensive low-profile surface drifter for use in initial assessment of potential tidal energy development opportunities.  The project addressed limitations in the existing drifter design

Drones and Drifters – The Great Pumpkin Race

October 2016 – July 2017

This project tested and developed a new low-cost approach to collecting oceanographic measurements for use in tidal initial site assessments. The plan combines one of the oldest tools in oceanography, the drifter, with one of the newest, the drone.

High-Resolution Numerical Model Resource Assessment of Minas Passage, Bay of Fundy

January 2017

Two numerical models developed by the Acadia Tidal Energy Institute are described. The models simulate the tidal flow in the Bay of Fundy, and in particular the Minas Passage. The models have different grid resolution, one suitable for site assessment and one suitable for resource assessment.

Turbulence in Grand Passage Nova Scotia: Measures of Intermittency

April – December 2016

Turbulence research is very important to advancing the in-stream tidal energy sector, however turbulence in general is not well understood.  Measurement at prospective turbine locations is essential prior to development, given the high degree of spatial variability between sites.

Numerical Modeling of Tidal Turbine Behaviour under Real Turbulent Tidal Flow Conditions

December 2015 – December 2016

Researchers investigated and numerically quantified the behaviour of a tidal turbine under turbulent unsteady tidal flow, using flow data collected in the lower Bay of Fundy (Digby area).

Characterizing Tidal Flows and Turbine Power Production in Petit Passage using Oceanographic and CFD Models

September 2015 – March 2016

The goal of this project was to identify potential turbine deployment locations in Petit Passage Nova Scotia, using computational fluid dynamics (CFD) and finite volume coastal ocean models (FVCOM).

Spectral and Structure Function Estimates of Turbulence Dissipation Rates in a High Flow Tidal Channel Using Broadband ADCPs

January 2016

Spectral and structure function methods are implemented to compute the dissipation rate, ε, from broadband, diverging-beam, acoustic Doppler current profiler (ADCP) data collected at four sites in a high-flow tidal channel.

Geoscience » Seismic & Marine Sound

Test Snow Crab Response to Seismic Stress

February 2012 – September 2013

There is concern in Atlantic Canada that there is insufficient information on the potential effects of seismic noise on snow crab.