Research Portal

Displaying 1 – 10 of 31 results

Filters

Geoscience » Source Rock & Depositional Environment

Seismic Reconstruction and Petroleum Systems Modeling of the Nova Scotia-Morocco Conjugate Margin

April – December 2019

Seismic Reconstruction

The Seismic Reconstruction project is a stand-alone element of the Conjugate Margin Program undertaken by the consulting firm Beicip Franlab. A number of subprojects and data streams are inputs to this project.

Performance validation of a remotely operated vehicle (ROV) in a controlled environment

June 2018 – October 2019

In the past few years, the Nova Scotia tidal community has augmented its marine operational capacity, but some unknowns and risks still exist and the cost associated with such operations are high.

Developing Enhanced Marine Operations (DEMO) in High Flow Tidal Environments

October 2017 – October 2019

Conventional subsea remotely operated vehicles (ROVs) perform poorly in currents exceeding 1.5 m/s. This is a key operating limitation in the success and cost of marine operations in the Bay of Fundy, where current speeds reach 5 m/s.

Geoscience » Source Rock & Depositional Environment

2018 Nova Scotia-Morocco Conjugate Geochemistry Project

May 2017 – June 2019

The objective of this project is to examine geochemical data from offshore and onshore Morocco to determine the presence and characteristics of effective Jurassic oil-prone source rocks.

Geoscience » Source Rock & Depositional Environment

Nova Scotia-Morocco Conjugate Biostratigraphy Project

September 2018 – June 2019

Biostratigraphy, the study of fossils to determine the age and depositional conditions of the sediments from which they are recovered, is a critical input to the seismic reconstruction of the Nova Scotia and Morocco margins.  Detailed biostratigraphical analyses have been completed by an internat

Geoscience » Source Rock & Depositional Environment

Attenuation of Petroleum Generation Characteristics by the Sulfurization of Organic Matter in Westphaflan Carboniferous Lacustrine Source Rocks (A Geochemical Study of Potential Marine Incursions)

October 2017 – May 2019

This project creates geochemical diagnostic tools that can be applied to potential source rocks of differing ages in the Maritimes Basin. These tools help build a more accurate interpretation of the evolution of the basin.

Testing of a New Turbine Blade Design and Blade Materials

July 2018 – May 2019

There’s not yet a standardized, optimal way of extracting power from tidal currents. That’s why many tidal industry technologies are currently being tested around the world.

Optimized Combinations of Tidal, Wind and Solar Electricity Generation with Energy Storage to Meet Nova Scotia’s Electrical Demand

August 2018 – March 2019

Wind, solar and tidal-generated electricity each have different, but potentially complimentary, cyclic times.

STREEM: Sensor Testing Research for Environmental Effects Monitoring

October 2018 – March 2019

The research goal was to enhance understanding on sensor performance and sensor-to-sensor interactions to inform environmental effects monitoring (EEM) protocol for future tidal turbine deployments.

Innovative Solutions for De-risking Species Detections in Tidal Energy Environmental Effects Monitoring Programs

April 2018 – March 2019

With collaboration from Genome Atlantic, this research project is using a new environmental DNA technology to rapidly identify and determine abundance of different fish species in high-flow marine conditions. Experiments were conducted at Dalhousie University’s Aquatron facility. N