Research Portal

Displaying 1 – 6 of 6 results

Filters

Renewable Energy » Tidal Resource Characterization and Modelling

How Does Sound Travel in High Energy Environments? Effectiveness of Acoustic Monitoring Systems and Turbine Audibility Assessment

April 2017 – September 2020

The researchers are designing and implementing a long-term acoustic monitoring program to support tidal energy development in the Bay of Fundy. Specialized acoustic instrumentation was deployed for a two-month period in Grand Passage to advance understanding how turbulence affects the ability to

Renewable Energy » Tidal Resource Characterization and Modelling

Numerical Modeling of Tidal Turbine Behaviour under Real Turbulent Tidal Flow Conditions

December 2015 – December 2016

Researchers investigated and numerically quantified the behaviour of a tidal turbine under turbulent unsteady tidal flow, using flow data collected in the lower Bay of Fundy (Digby area).

Renewable Energy » Tidal Resource Characterization and Modelling

Turbulence in Grand Passage Nova Scotia: Measures of Intermittency

April – December 2016

Turbulence research is very important to advancing the in-stream tidal energy sector, however turbulence in general is not well understood.  Measurement at prospective turbine locations is essential prior to development, given the high degree of spatial variability between sites.

Renewable Energy » Socio-economic and Traditional Use » Socioeconomic Studies

Nova Scotia Tidal Research Summary Report – Researching Tidal Energy – Marine Life: The Nova Scotia Experience

October 2015 – May 2016

This report looks at the extensive tidal energy-related research undertaken in the Bay of Fundy over a 10 year period beginning in 2005.

Renewable Energy » Tidal Resource Characterization and Modelling

Characterizing Tidal Flows and Turbine Power Production in Petit Passage using Oceanographic and CFD Models

September 2015 – March 2016

The goal of this project was to identify potential turbine deployment locations in Petit Passage Nova Scotia, using computational fluid dynamics (CFD) and finite volume coastal ocean models (FVCOM).

Renewable Energy » Tidal Resource Characterization and Modelling

Spectral and Structure Function Estimates of Turbulence Dissipation Rates in a High Flow Tidal Channel Using Broadband ADCPs

January 2016

Spectral and structure function methods are implemented to compute the dissipation rate, ε, from broadband, diverging-beam, acoustic Doppler current profiler (ADCP) data collected at four sites in a high-flow tidal channel.