Research Portal

Displaying 1 – 10 of 14 results

Filters

The Vectron2 Project: Turbulence Measurements for the In-stream Tidal Energy Industry

March 2019 – November 2021

The Vectron is a new sensor used for measuring turbulence velocity within a tidal turbine’s swept area.  The Vectron has been successfully prototyped, where next steps are to take the technology to the ‘industry-ready’ stage of development and the focus of this project.

Real-Time Detection of Marine Mammals in High Flow Environments

May 2019 – September 2021

The project research goal is to design and test an innovative acoustic sensor system that will feature a wireless magneto-inductive (MI) communications link – to alert users in real time of the presence and location of marine mammals in high noise tidal environments.  The research entails a field

Development of Acoustic Doppler Aquatic Animal Monitoring (ADAAM) for application to marine life movement in high-energy tidal channels

March 2018 – February 2021

Acoustic Doppler Current Profilers (ADCPs) are a standard tool used for measuring ocean currents.

Using Radar to Evaluate Seabird Abundance and Habitat Use at the Fundy Ocean Research Center for Energy Site near Parrsboro, Nova Scotia

April – September 2018

Shore-based seabird surveys conducted at the Fundy Ocean Research Center for Energy (FORCE) in Parrsboro, NS, determine abundance, habitat use and potential risk to seabirds at the site.

Going with the Flow II: Using Drifters to Address Uncertainties in the Spatial Variation of Tidal Flows

October 2017 – June 2018

Drifters are one of the oldest, simplest and most reliable methods for measuring ocean currents. Drifters also provide a simple, low risk platform from which to gather acoustic information along flow streamlines or ‘drift tracks’.

Measuring the Acoustic Detection Range of Large Whales from an Ocean Glider to Improve an Acoustic Whale Alert System for use by the Offshore Marine Industry in Atlantic Canada

April 2017 – January 2018

Researchers investigated a novel and in-development passive acoustic monitoring (PAM) system for use as a marine mammal detection technique. The work builds on a current research initiative between Dalhousie University and Woods Hole Oceanographic Institute (WHOI).

Finite Element Analysis to Assess Fish Mortality from Interactions with Tidal Turbine Blades

February – December 2017

The research project used finite element analysis (FEA) to simulate the impact of a tidal turbine blade on fish, and assess whether mortality of marine life can be expected in such an event.

Turbulence Dissipation Rates from Horizontal Velocity Profiles at Mid-Depth in Fast Tidal Flows

December 2017

This study characterizes the turbulence in a tidal channel in the Bay of Fundy that has been identified for development as a tidal power resource.

Going with the Flow: Advancement of Drifting Platforms for use in Tidal Energy Site Assessment & Environmental Monitoring

April 2015 – August 2017

This research project aimed to apply a simple and low cost philosophy to ocean observation by developing an inexpensive low-profile surface drifter for use in initial assessment of potential tidal energy development opportunities.  The project addressed limitations in the existing drifter design

Drones and Drifters – The Great Pumpkin Race

October 2016 – July 2017

This project tested and developed a new low-cost approach to collecting oceanographic measurements for use in tidal initial site assessments. The plan combines one of the oldest tools in oceanography, the drifter, with one of the newest, the drone.