Research Portal

Displaying 11 – 20 of 29 results

Filters

Performance validation of a remotely operated vehicle (ROV) in a controlled environment

June 2018 – October 2019

In the past few years, the Nova Scotia tidal community has augmented its marine operational capacity, but some unknowns and risks still exist and the cost associated with such operations are high.

Testing of a New Turbine Blade Design and Blade Materials

July 2018 – May 2019

There’s not yet a standardized, optimal way of extracting power from tidal currents. That’s why many tidal industry technologies are currently being tested around the world.

Geoscience » Georges Bank Research & Data

Georges Bank Research & Data

January 2019

Georges Bank is a large submarine bank (250km by 150km – 40,000 km2) located at the edge of the Atlantic continental shelf between Cape Cod and Nova Scotia.

Acceleration/Particle Velocity (PA/PV) Measurement System Evaluation in a Tidal Environment

February 2017 – December 2018

The objective of this project was designing and running a field experiment to test the performance of the Particle Acceleration/Particle Velocity (PA/PV) vector sensor.

Analysis of Tidal Turbine Mooring Systems in Turbulent Flows Applying the (Wind Industry) FAST Simulation Tool and DSA ProteusDS Software

March – September 2018

For floating tidal turbine platforms, the turbine forces and resulting platform motions have a direct impact on the lifetime of its moorings and cables. This means the tidal sector must predict accurate tidal turbine loading on floating platforms to determine mooring life and cable longevity.

Assessing Corrosion, Wear, Fatigue and VIV on Moorings and Cabling to Reduce Risk in Marine Operations

October 2017 – August 2018

The cost of cabling and moorings over the entire life of a tidal energy project is a significant proportion of total project expenditures and the potential failure of these components remains a major risk for the emerging tidal energy sector.

In Situ Turbulence Replication and Measurement (InSTREAM)

October 2015 – January 2018

The In Situ Turbulence Replication and Measurement (InSTREAM) project was conceived to address some fundamental questions about the turbulence physics in tidal energy sites and laboratory tanks used to simulate these sites.

FORCE Data Management System/User Interface

April – June 2017

This project defined a Data Management System (DMS) and user interface solution for use by FORCE.

Impact of Channel Blockage on the Performance of Axial and Cross-Flow Hydrokinetic Turbines

April 2017

This work investigates the effect of channel blockage on how axial and cross-flow turbines perform. The objective is to fill a gap in the literature on suitable blockage corrections for cross-flow turbines.

Advancing Tidal Energy Turbine Operations through High Fidelity Tug Propulsion and Control Simulation Software

November 2016 – March 2017

The project objective was to develop a numerical model of a tug boat and its propulsion system to accurately predict its dynamic behaviour in turbulent tidal flows.