





ﬂ‘f}ﬁ&i.} N

N S

%N
i

a8

" "15_'«.



REGIONAL TECTONIC CONTEXT

SYDNEY BASIN PLAYFAIRWAY ANALYSIS - CANADA - July 2017

2.1 Tectonic context at regional scale =
. 2-1-2 Sydney Basin: the main structural elements A
. 2-1-3 Pre-Carboniferous basement: geological framework of the Sydney Basin

. 2-1-4 Tectonic framework of the Sydney Basin

. 2-1-5/6 Tectonic evolution of the pre-Carboniferous basement regional cross-section

. 2-1-7 Main tectonic units of the Sydney Basin pre-Carboniferous basement

2.2 Tectonic context at basin and seismic scale

. 2-2-1 The main deformation mechanism and style affecting the Sydney Basin

. 2-2-2 Schematic tectonic evolution of the Sydney Basin

. 2-2-3/4/5/6 Geological interpretation of the key seismic lines

. 2-2-7/8 Structural sequential restoration of the composite seismic line

F F 3 7
- , . *—-.-1-,-: A

% ’ |
- |

Eii:im E1I-'ﬂ.'lﬂ

Eﬂlrcm

e .1:‘_

v
o

m C ) 5 4 .
it

7
7% 7
7y

Projection system: UTM 200
Datum:; NADZY
Ellipsced: Clarka 1886

Datum plane: Mean Sea Level
Comour interval; S00m

1] 20000 A D000m
1 : 900000
BE0DD0 80000 500000 920000 840000

Contents Pl. 2.1.1




REGIONAL TECTONIC CONTEXT

SYDNEY BASIN PLAYFAIRWAY ANALYSIS - CANADA - July 2017

Color table

o

- -4000m

5260000 5320000

5200000

660000

)

5140000

Fault zo

5080000

5020000

= L
A !I‘ ,{1‘
North Sydney i},/
£ 7=

ne

T !

720000

" Ma

780000 840000

etic anomaly map |

900000

N

1080000

1140000

Normal Fault

Inverse Fault

Inverted Fault

\

7
o

| Structural Map of Top Basement (Depth)

R e i A A

"

Pl 2.1.2

Sydney Basin: the main structural elements




REGIONAL TECTONIC CONTEXT

SYDNEY BASIN PLAYFAIRWAY ANALYSIS - CANADA - July 2017

N
=
S
Nh %
QUEBEC
50°00N
Québec City / _
MAGDALEN Sessy '
BASIN = -
Maritimes
Basin
PRINCE EDWARD
UNITED STATES
Wi ATLANTIC OCEAN : ACCRETED TERRANES ~ SUCCESSOR BASINS
LAURENTIAN MARGIN - Dunnage Zone |;| Middle Paleozoic
" I @ 000 | U | mm— St. Lawrence Platform i
Appalachian Structural Front - IZ‘ Gander Zone |:I Upper Ealeozmc
| e [ ]External Humber Zone [ AvalonZone [ ] Mesozoic
65°00 60°00 55°00 Baie Verte-Brompton Line [ ]intemal Humber Zone [ Meguma Zone
Figure 1 : Topographic and bathymetric map of eastern Canada (base map is taken from the DEM of Natural Resources Canada). The 2017 call for bids Figure 2: Regional tectonostratigraphic domains in eastern Canada (from Dietrich et al. 2011). The Sydney Basin is
area is shown by the white polygon. The white shaded polygon is a marine protected area. The offshore Sydney Basin is located in the Cabot Strait part of the largest Upper Palaeozoic Maritimes basins. Apart from the Laurentian platform, the pre-Carboniferous units
between Cape Breton Island (Nova Scotia) and Newfoundland. The St. Lawrence submarine channel crosses through the entire offshore Sydney Basin. (Humber zone and accreted terranes) constitute the metamorphic and magmatic basement of the Maritimes Basin.
The offshore basin has an overall elliptical geometry and covers an area of approximately 250 000 km?.
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[ Pre-Carboniferous basement: geological framework of the Sydney Basin Pl. 2.1.3
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Figure 5: Caledonides and Variscan Appalachian
mountain belts at the end of Carboniferous times (from
Higgins, A. K., & Leslie, A. G., 2008). The Sydney Basin
is superimposed on the Appalachian-Variscan belt.

Figure 7: Schematic regional cross-section linking the St. Lawrence foreland platform to the Nova Scotia
passive margin. This section is a compilation of various published documents: Dietrich et al. 2011 for the
St. Lawrence platform and Magdalen and Sydney basins; Keen and Williams 1990, for the Orpheus
graben; PFA 2011 for the Nova Scotia margin. Moho was constrained from Petrescu et al. 2016 for the
northern part of the section and by the OETR 2009 refraction results and Louden et al. 2010 reports for
the southern part. Deep architecture below the Sydney Basin was simplified from Van der Velden et al.
2004. Due to zig-zag composite nature of this section, apparent relative size of the various basins must
be considered with caution (i.e. width of the Magdalen Basin). Discontinuous segments of the section (see
inset for location) are underlined by white shaded vertical strips.

This schematic section shows three main tectonic domains from north to south:

1)The St. Lawrence platform constituting the foreland autochthon domain of the Taconic-Appalachian belt.
This platform consists of a metamorphic and magmatic basement emplaced during the Precambrian
orogens: Superior (not shown in this section) and Grenville orogens. This basement is overlain by Early
Paleozoic (Cambrian to Devonian) shallow marine to nearshore sediments.

2)The Magdalen and Sydney basins superimposed on the complex Taconic-Neoacadian belt composed
principally of metamorphic and magmatic rocks. These two Carboniferous basins that developed by
intracontinental extension and strike-slip faulting are filled by continental and shallow marine (evaporitic)
deposits. The two basins are separated by the Cabot fault, a major right lateral crustal scale fault. These
two “intracontinental basins were only deformed by the Alleghanian late Carboniferous Permian event
(Figure 6)

3) The Nova Scotia Mesozoic passive margin developed during Mesozoic time. This domain is bounded
by a major trans tensional left lateral fault (the Cobequid Chedabucto or Minas fault) controlling the pull-
apart Orpheus half graben formation and is characterized by a thinned continental crust connected to the
oceanic domain by a high velocity zone interpreted as underplated intrusive (OERA 2011) or serpentinized
mantle (Beaumont, 2011 and Louden et al. 2010).
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Figure 6: Main tectonic events of eastern Canada (from Lavoie et al. 2009). Basement of the Sydney Basin

consists of metamorphic and plutonic units deformed and accreted to the Laurentian margin during the 4

major tectonic events (Taconian, Salinic, Acadian, Neoacadian). The Sydney sediments rest unconformably

on top of the crystalline Pre-Carboniferous basement and were poorly deformed (inversion of normal faults,
«* Strike-slip faults) during the late Carboniferous-Permian Alleghanian compressional event.
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Tectonic evolution of the pre-Carboniferous basement (1) Pl. 2.1.5
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Tectonic evolution of the Pre-Carboniferous basement (2)
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g;gnggs Fogo Island pluton; GBF, Green Bay fault;
_ GANDERIA GRUB, Gander River ultrabasic belt; HH, Hodges Hill pluton; LBOT, Lushs Bight oceanic tract; MP,
%o | T roPELOGAN vicTORIA ARG COASTAL ARG Mount Peyton pluton; RBF, Rocky Brook—Millstream fault system,;
Y @Eﬁgﬁgﬁ&gﬁﬁ;ﬁz - BACHARD (45430 ba) RF, Restigouche fault; RIL, Red Indian Line; SGB, St. George batholith; SM, South Mountain batholith;
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In the Sydney Basin area, pre-Carboniferous basement corresponds to only two orogenic units: the
Salinic and the Acadian orogens. These units are bordered by 3 major faults:

1) the Cabot fault separating the Salinic orogen (corresponding to the Ganderia paleoblock) from
. : > the Taconic orogen (corresponding to the Laurentian and Peri-Laurentian paleoblocks). The
Sk g 42 . Taconic orogen constitutes the pre-Carboniferous basement of the Magdalen Basin to the
: . north. Note that this fault or fault zone is the main oceanic suture corresponding to the closure
of the lapetus paleo-Ocean.
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2) The Dover fault separating the Salinic orogen from the Acadian orogen resulting from the
/f accretion of the Avalonia margin and paleo-continent to the Salinic and Taconic belt. It can be

-
- - n
"

’ L . ~ * .
. s P P Acadian ‘..... C::/’/‘M
B P Salinic
- -

|
’ Taconic or / ds‘ J 3) The Cobequid Chedabucto fault separates the Acadian orogen from the Neoacadian orogen.
U Penobscot Rl

It separates the Meguma paleo continental block from the Avalonia block. Note that this fault
- | \_/ which had a probably dextral strike-slip component during Paleozoic times was reactivated as
transtensional sinistral strike slip fault, creating the Orpheus pull-apart basin, during the
Mesozoic opening of the Atlantic.

considered as a suture zone corresponding to the closure of the Acadian seaway (Figure 11).

MEDALATAAN DEFORMAIION The pre-Carboniferous basement of the Sydney Basin is mainly composed of:

ACADIAN BUT NO SALINIC DEFORMATION

SALINIC OVERPRINTED BY
ACADIAN DEFORMATION

TACONIC OVERPRINTED BY SALINIC
& ACADIAN DEFORMATION

MIDDLE DEVONIAN TO
LOWER CARBONIFEROUS

1) metasediments with various grade of metamorphism from very high grade (blueschist facies
and, migmatite in the Salinic orogen), to locally poorly metamorphosed sediments in the
Acadian orogen.

2) Intrusive plutons of various natures in all the tectonic units.

PLUTONS
STy . ' UPPER SILURIAN-LOWER
il e DEVONIAN SYN-OROGENIC
I~ I\ | ACADIAN PLUTONS
I J/ . SILURIAN SYN- TO POST
Salinic OROGENIC SALUNIC PLUTONS _ _ _ o _ _ _
I] Figure 12: Orogenic belts and associated Silurian—Early Carboniferous plutonism of the Canadian and

US Appalachians (modified from van Staal et al. 2009). Dashed red line shows the theoretical location
of figure 10.
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Main tectonic units of the Sydney Basin pre-Carboniferous basement Pl. 2.1.7
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The main deformation mechanism

Schematic 3D illustration of a pull-apart basin formed

under a (dextral) transtensive regime. formed under a (dextral) tranpressive regime.
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Schematic 2D illustration in map view of a flower (pop-

up) structure formed under a (dextral) transpressive
regime.

Schematic 2D illustration in map view of a pull-apart basin
formed under a (dextral) transtensive regime.
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Figure 13: Schematic illustration of a tectonic inversion.
The figure on the left (A”) shows the extensional phase and the figure on the right (B”) the compressional one.

Schematic 3D illustration of a flower (pop-up) structure

and style of the Sydney Basin is represented by the inversion of a graben and semi-graben system under a transpressive regime.
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Figure 14: Structural map of the Cabot
fault zone (Landon & Hall (1994).

The Cabot fault zone represents the A
north-westernmost boundary of the
Sydney Basin. A structural analysis
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Figure 15: Seismic interpretation of the main kinematic units associated with a tectonic inversion along the line 83-4103 of the
Sydney Basin.

This seismic section shows a representative example of the inversion of a semi-graben along the Sydney Basin. The inversion
fold is an asymmetric anticline facing the footwall of the fault. The interval C is the pre-rift unit (pre-Carboniferous).

The large thickness variation of the Unit-B (Horton Gp.) highlights a fault-controlled deposition during an extensional (syn-rift)

regime. The interval A represents the post-rift unit, characterized by an overall constant thickness. It includes Middle and Late
Carboniferous and Permian units.
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The main deformation machanism and style affecting the Sydney Basin

Pl 2.2.1
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Figure 16: (from 0 to 6) Schematic Tectonic Evolution of the Sydney Basin.
A schematic and synthetic tectonic evolution of a representative and conceptual cross-section of the Sydney Basin was built in form of sequential forward-modelling, from the
pre-Carboniferous basement (0) until the present day (6).

As illustrated by the seven kinematic steps below and the vertical time scale column, the main deformation events affecting the Basin occurred during the Paleozoic.
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N
Time scale (time in Ma) |  Unit Main Tectonic events Line 83-4103
290 The line 83-4103 crosses the westernmost portion of the =7
Sydney Basin, intersecting the North Sydney fault zone. NW
Well F-24 is located 2km NE of the section. 83-4103 : SE
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constrained with well data. B
300 This area of the Sydney Basin is characterized by a system -
302 of graben and semi-graben, opened under a transtensive =
regime during the deposition of the Horton Group (Middle '
304 Devonian/Lower Carboniferous). z N
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the North Sydney fault under a transpressive regime during £8 ©
310 the Lower Permian age (?). = L
28 S)
s [V}
313 Regarding the regional significance of the compressional §.= S
event, this transect shows that its impact remains limited 5 =
315 on the Carboniferous succession. §
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Figure 18: Seismic line (TVD) 83-4103
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Figure 19: Geological interpretation of seismic line (TVD) 83-4103
J
Geological interpretation of seismic line (TVD) 83-4103: Pl. 2.2.3 |
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Composite line 4 + K50

Time scale (time in Ma) Unit Main Tectonic events
The composite line 4 + K-50 crosses most of the Sydney Basin, from the Cabot Fault zone on the left hand-side of the section, to the
290 220 depocenter D2.
The Horton is clearly fault-controlled by the transtensional event of Lower Carboniferous age that formed a semigraben system, with
=N [ 14. typical rotated blocks and growth strata. The deepest semi-graben of this section is D2, which reaches ~6150 m (TVD).
295 7 This transect clearly shows elements of tectonic inversion, analogue at the North Sydney fault, along the line 83-4103.
The three smooth fault-related anticlines (identified by grey arrows in the section view) are the result of a transpressional stress field
(during the Permian?), where the pre-existing normal faults have been re-activated with inverted kinematic. The effect of the
S = + 4+ inversion is represented by the folding of the post-rift series (Windsor, Namurian, Sydney Mine and Pictou Gp.) with a typical fault
300 S — bend fold deformation mechanism. It's to be noted that although the inversion is a major tectonic event, this part of the basin
302 .%’ remains relatively protected form the compression.
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Figure 22: Geological interpretation of composite seismic line (TVD) 4 + K50
Pl. 2.2.4 Geological interpretation of composite seismic line (TVD) 4 + K50
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Time scale (time in Ma) Unit Main Tectonic events L'ne 1

290 —| Line 1 crosses the most north-
eastern portion of the Sydney Basin,

_)H « intersecting a graben that defines
the depocenter D3 and a

295 7 semigraben verging towards the
right-hand of the section (SE) that
defines the depocenter D2b.

300 & § i.%—: As shown in Figure 23 this seismic

302 % = section reveals strong and truncated

odls reflectors between 5000 and 7000

304 = E m in the central area, Fhese were

305 ﬁ‘f g interpreted as pre-rift units, sFroneg

=| deformed by pre-carboniferous

e tectonic events (Pl. 2-4, 2-5).

—— The Horton is clearly fault-controlled

310 o 2 by the transtensional event of the

-;, 8ls + 4+ Lower Carboniferous. As showed in
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313 SI1= a8 )

&2l (g units, the Horton reflectors are

315 — e deeply eroded; a clear angular

5| S o
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g‘f g — northernmost boundary of the D3
5_ D PN basin; this would suggest local
320 5 inversion after the deposition of the
3 Horton Gp. but Dbefore the
deposition of the Windsor Gp.
323 =
fuod +d v " .
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325 S|E —_— :
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=D B Basin (D1, D2, D2b and D3).
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[ R identified by grey arrows in section

335 5 [ view are the result of a
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Figure 23: Zoom of the seismic line 1, highlighting
geological truncation. Figure 24: Structural map of the basement and
location of seismic line 1 in red.
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Figure 26: Geological interpretation of seismic line (TVD) 1
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Time scale (time in Ma)

Unit

Main Tectonic events
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Line K-47

Line K-47 crosses the Sydney Basin longitudinally to the main fault trend (NE-SW).
Due to the direction of the cross-section, no major fault zones are intersected and the thickness of the main units are
generally constant.

The Horton Gp. is present in the left hand side of the section only (depocenter D3b), suggesting the presence of a paleo-
depocenter due to subsidence and local extension (transtension) in this area.

The rest of the series was deposited under a subsidence regime with local transtension that defined local fault controlled
deposition.
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Figure 28: Seismic line (TVD) K-47
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Figure 29: Geological interpretation of seismic line (TVD) K-47
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Geological interpretation of seismic line (TVD) K-47
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Time scale (time in Ma)
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Figure 30 (Step-1 — Step-10) Sequential
Restoration of the composite seismic
line 4 + K50.

The sequential restoration illustrated below
from the Present day (Step-1) to the Pre-
Carboniferous (Step 9) shows the main
tectonic events affecting the primary
depocenters of the Sydney Basin.

This composite line (4+K50) crosses the
central area of the Sydney Basin, revealing
a half-graben system, with typical rotated
blocks and growth strata.

This transect clearly shows elements of
tectonic inversion, analogous to the North
Sydney fault, along the line 83-4103.

The four smooth fault-related anticlines
arrowed in red in Step 2 are the result of a
transpressional stress field (during the
Permian?), where the pre-existing normal
faults have been re-activated with inverted
kinematic.

The back-stripped sections cannot be
considered fully balanced because of the
out-of plane movements due to the lateral
displacement ~ component, in  both
transtensive and transpressive regimes.
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Step-2.The truncation (*) affecting the Pictou Gp was reconstructed and revealed up to 400 m of
eroded sediments. The reconstruction shows four smooth antiforms that were the result of the
Inversion of pre-existing normal fault (Early Carboniferous) active under a transpressive regime
active during the Permian age (?)
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Step-3. The Permian (?) inversion (transpression) phase is restored. All the fault-related anticlines
are back-stripped. The constant thickness of the Pictou Gp. suggests no relevant deformation
events controlling the deposition.
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Step-4. The Sydney Mine Fm. shows a gradual thickening towards the right of the section
(towards SE), and suggests subsidence with a main focus in the south area. No relevant fault
activity is recorded during this period.
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Step-5. The constant thickness of the South-Bar Fm.
deformation events during this period.
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Step-6. The Namurian unit shows a gradual thickening towards the right of the section (towards
SE), most likely due to subsidence in the south. No relevant fault activity is recorded during this
period. The Top Namurian represents one of the major unconformities of the area, verified on

both well and seismic data.
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Step-7. The constant thickness of the Upper Windosr Gp.. suggests no relevant deformation
events during this period.
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Step-8. The Lower Windsor Gp. shows a gradual thickening towards the right of the section
(towards SE), due to subsidence. The normal fault highlighted in the section results active during
this period.
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Step-9. This step shows the main transtensional deformation event affecting the Sydney Basin.
It defined the main depocenters of the Early Carboniferous and controlled the deposition of the
Horton Gp. The faults highlighted in red were active during this period.
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Step-10. All the normal faults active during the deposition of the Horton Gp. are restored. A lateral
extension ~ 3.1 km has been calculated.

The palaeo-relief of the pre-rift series is not sub-horizontal, and shows structural highs and
depocenters. This would suggest a structurally complex “basement” affected by previous tectonic
events (Pl. 2-4, 2-5)
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