
CHAPTER 7

BASIN MODELING – TEMIS FLOW 3D

CHAPTER 7.1

BASIN MODELING – 3D BLOCK BUILDING

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

Play Fairway Analysis Offshore SW Nova Scotia TEMIS FLOW 3D[®] Basin Modeling – INTRODUCTION

\rightarrow Objectives:

- Active petroleum systems description
- Petroleum system chart definition
- Source rocks potential evaluation at the scale of the whole basin
- In place HC volumes estimation

\rightarrow Tools:

- The basin modeling software Temis Flow 3D®
- Migration tools Trap Charge Assessment (Ray Tracing method)

\rightarrow Input data:

- Seismic data (chrono-structural interpretation in Depth)
- Sedimentological data (Dionisos® results and other synthesis)
- Geological synthesis (on geohistory, petrophysics, geochemistry, etc.)

Table of Contents

(1) Basin Modeling - 3D Block Building

Building of the 3D geological model. Compilation of structural data, sedimentological data, geochemical data, etc.

(2) Maturity / Expulsion Simulation

1st modeling phase with Temis Flow 3D[®] with a first scenario. Modeling of the 3D block through the time (maturity and expulsion, migration not computed). Analysis of Temis 3D[®] results for the definition of source rocks potential.

(3) Migration Simulation

2nd modeling phase with Temis Flow 3D[®] on the first scenario. Modeling of the 3D block through the time with HC Darcy migration using Visco calculator. Redistribution of HC accumulations by intervals using Trap Charge Assessment tool.

(4) Hot Spot Scenario

Modeling of the 3D block through the time (maturation) using a second scenario including an hot spot.

(5) Conclusions

Resolution of TEMIS FLOW 3D Blocks used for this study

\rightarrow Reference 3D Block, from seismic interpretation:

- 351*199 meshes
- mesh resolution 1 * 1 km
- 10 layers (11 horizons)

\rightarrow 3D Block for Temis / Maturity Modeling:

- 351*199 meshes
- mesh resolution 1 * 1 km
- 36 layers (37 horizons)

ightarrow 3D Block for Migration Modeling

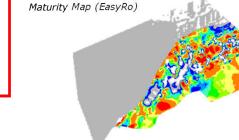
- 158*99 meshes
- mesh resolution 2 * 2 km
- 36 layers (37 horizons)

STRATIGRAPHIC INTERVAL and 5 SOURCE ROCKS are studied:				
STRATIGRAPHIC INTERVAL	SOURCE ROCKS			
Cenomanian-Albian (K101-K94)	APTIAN SR (~K124)			
Albian-Barremian (K130-K101)	VALANGINIAN SR (~K136)			
Barremian-Tithonian (J150-K130)	TITHONIAN SR (~J150)			
Tithonian-Callovian (J163-J150)	CALLOVIAN SR (~J163)			
Early-Middle-Jurassic (J200-J163)	LOW JURASSIC COMPLEX SR (~J196)			

Stratigraphic chart in the Reference 3D Block

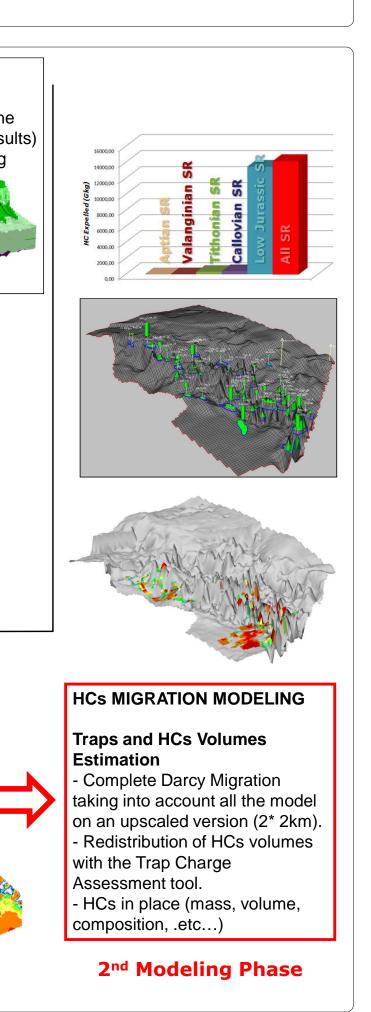
11 horizons provided by geophysicians are used in the model. Other horizons correspond to subdivisions with limited geological constraints (Table 1).

Age (horizon)	Horizon	Top Source Rocks	Seismic Horizons	Horizon Color	
0	Sea bottom		Yes		
14,5	Miocene		Subdivision		
29	Oligocene Unconformity		Yes		
50	Eocene		Yes		
70	Upper Cretaceous		Subdivision		
94	Cenomanian Unconformity		Yes		
97	Cenomanian		Subdivision		
99	Cenomanian		Subdivision		
101	Albian-Logan Unconformity		Yes		
106	Albian		Subdivision		
112	Aptian Logan-Cree		Subdivision		
124	Top Aptian SR		10m Thickness		
125	Barremian		Subdivision		
130	Barremian		Yes		
131,5	Barremian		Subdivision		
133,5	Hauterivian		Subdivision		
134,5	Hauterivian		Subdivision		
136	Top Valanginian SR		10m Thickness		
137	Top BCU		Yes		
140	Valanginian		Subdivision		
148	Berriasian		Subdivision		
150	Top SR Tithonian		Yes		
151	Top Tithonian		Subdivision		
154	Upper Jurassic Ind.		Subdivision		
157	Kimmeridgian		Subdivision		
160,5	Callovian		Subdivision		
163	Top SR Callovian		Yes		
165	Scatarie		Subdivision		
170	Bajocian		Subdivision		
175	Aalenian		Subdivision		
180	Toarcian		Subdivision		
185	Toarcian		Subdivision		
190	Pleisbachian		Subdivision		
195	Sinemurian		Subdivision		
196	Top Low Jurassic Complex SR		20m Thickness		
197	Top Autochtonous Salt		Yes		
220	Top Basement		Yes		


Model Building

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015 **Dionisos[®] Sedimentary Geological Data PFA 2011 Structural Maps from Seismic** Facies Maps Interpretation \rightarrow Geological context \rightarrow Coherency between the \rightarrow Geological history two models (data and results) \rightarrow Deep geophysics \rightarrow Crust model and rifting \rightarrow Geochemical data \rightarrow Well log data \rightarrow Petroleum field data → Mesh Refining (Dionisos[®] grid \rightarrow Correction and smoothing. resolution 4 * 4 km). \rightarrow Identification of salt bodies. \rightarrow Conversion in petrophysical facies. \rightarrow Additional subdivisions for: → Definition of petrophysical properties - Reservoirs (according Dionisos[®]) - Source rocks (with effective thickness maps - Refining of sedimentary sequences - Temis[®] default lithologies library (Automatic subdivisions proportional to the - Log and core data (porosity, permeability, etc.) age) - Temperature and pressure calibration - Technical subdivisions (refining time steps) Source Rocks Parameter \rightarrow Restoration through time. - Kerogens types - Chemical kinetics - TOC Thermal boundaries - Surface Temperature history - Thermal basement (lithosphere modeling) - Rifting history **TEMIS FLOW 3D® Block** Calibration Plot PRESSURE / TEMPERATURE / MATURITY MODELING **Calibration Phase** - Pressure - Temperature Vitrinite Maturity Map (EasyRo) **SR Modeling** - Present day maturity level - Maturity history

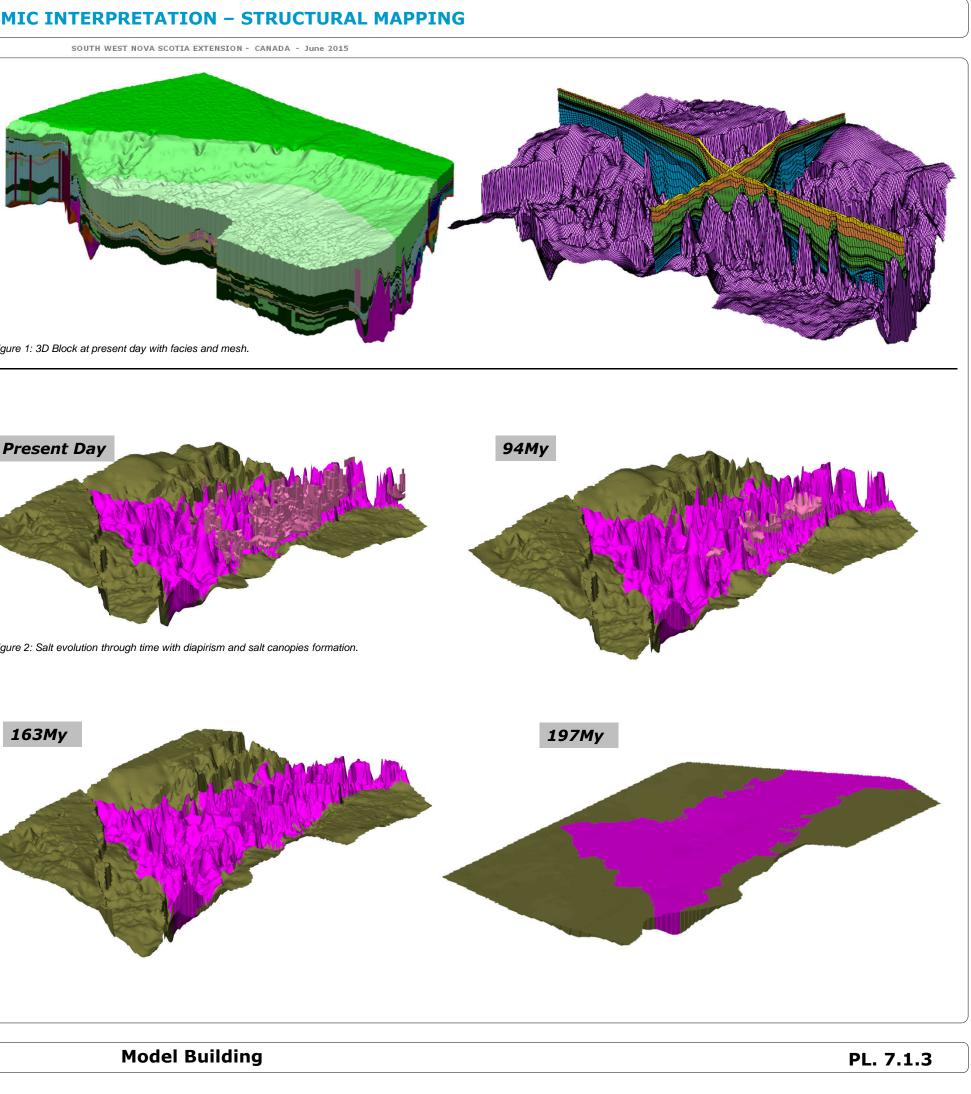
Expelled volumes


1st Modeling Phase

GRID RESOLUTION = 1 * 1km

with:

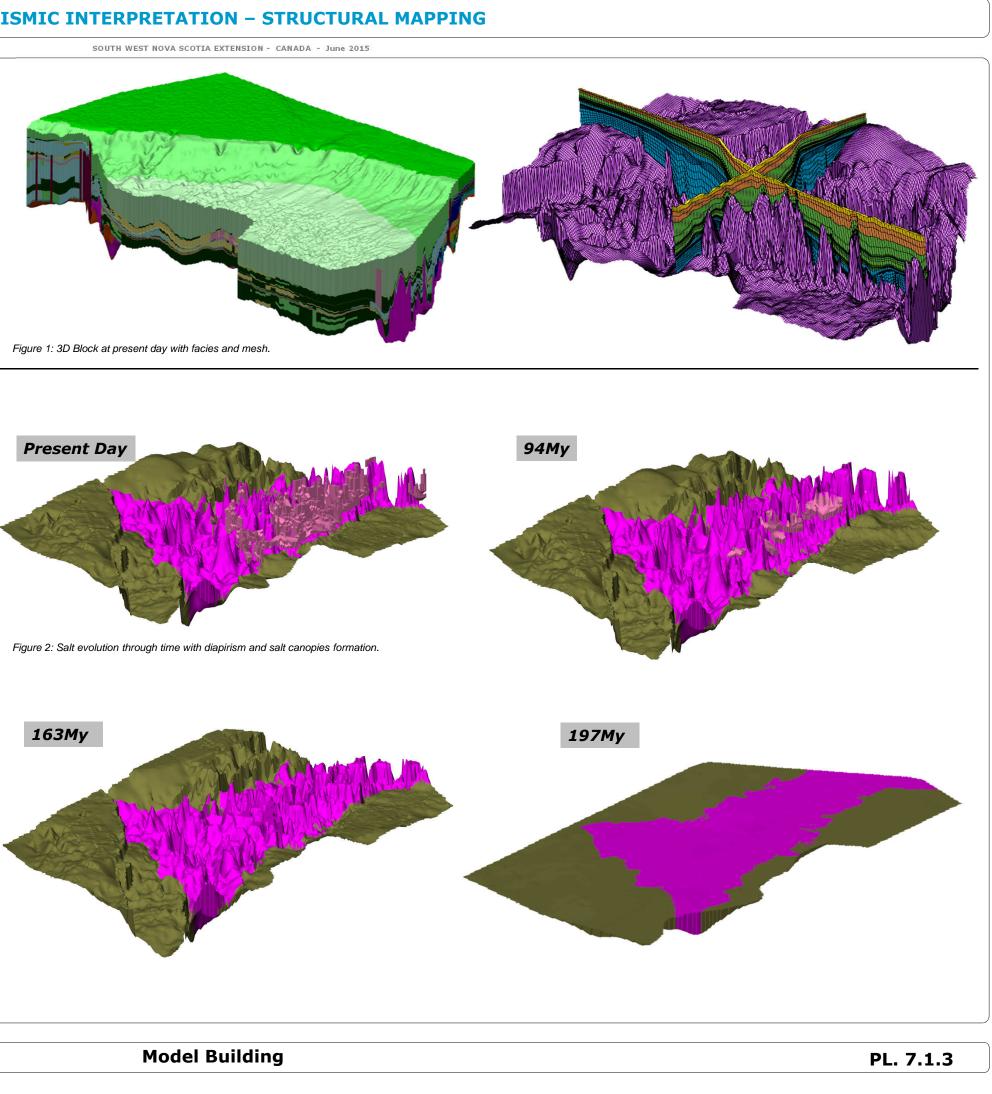
Model Building

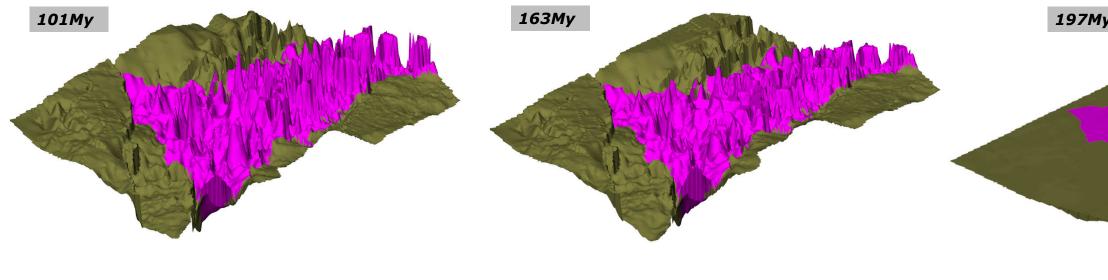


Sediment Model Building - Model skeleton was build using depth interpreted horizons corrected from crossings and canopies.

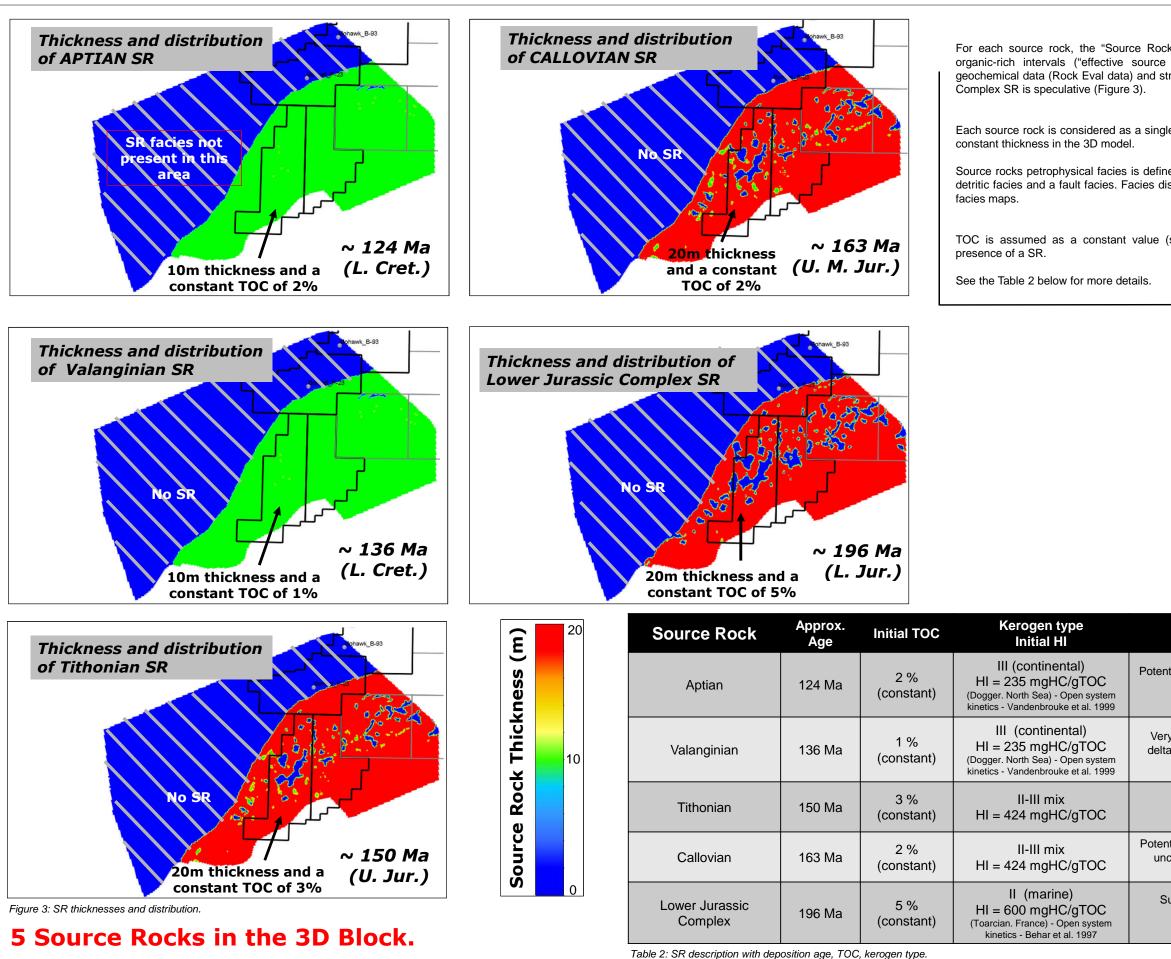
Layering was done according Dionisos [®] model (key intervals with specific lithofacies distribution) and to keep a moderate thickness between horizons.
Source Rocks thicknesses were taken from PFA2011 model.

- Dimension : 1 * 1km


- Number of cells : 315I * 199J *36K = 2 193 957
- The interval from J150 (Tithonian) to basement has been shifted to +300m compared to
- PFA2011 due to depth conversion model.



Salt Restoration


- Salt restoration was done according tectonic evolution (Weston et al., 2012), sedimentation and paleobathymetry (Figure 2).

- Salt volume is approximately considered constant through time (2.8-2.5*E13 m3).
 Basement geometry was smoothed through time.
- Canopies formation starts at 101 My and ends at 50 My where we assume there is no more salt movement.

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

For each source rock, the "Source Rock Thickness" corresponds to the cumulated thicknesses of organic-rich intervals ("effective source rock thickness"). This thickness is estimated with well geochemical data (Rock Eval data) and structural data from PFA2011. Thickness of the Lower Jurassic

Each source rock is considered as a single organic-rich layer (regarding the deposition context) with a

Source rocks petrophysical facies is defined as a specific shaly facies (to help expulsion), a carbonate detritic facies and a fault facies. Facies distribution (like the others layers) was defined from Dionisos®

TOC is assumed as a constant value (see table below) where the deposition context allows the

Description

Potential source rock in the Naskapi shale (and equivalent), identified in some wells. Variable effective thickness between 0 – 10 m.

Very poor and scattered source rock (coal fragments in deltaic environment, through the Mississauga formation) Variable effective thickness between 0 - 10 m.

Best defined SR, widely proven. Variable effective thickness between 0 - 20 m.

Potential source rock in the Misaine shale (and equivalent), uncertain extend and richness due to the lack of data. Variable effective thickness between 0 - 20 m.

Suspected, not proven (Pleisbachian/Toarcian SR). Potentially present above salt basins only. Assumed average thickness 20 m.

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

Name	Reference density[kg/m ³]
5_C1-biogenique	0.6678
4_GAS-Thermogenic	50.0
3_OIL-Condensate	780
2_OIL-Normal	860
1_OIL-Heavy	980

Average Densities at Surface Conditions (for the 5 mobile hydrocarbons classes)

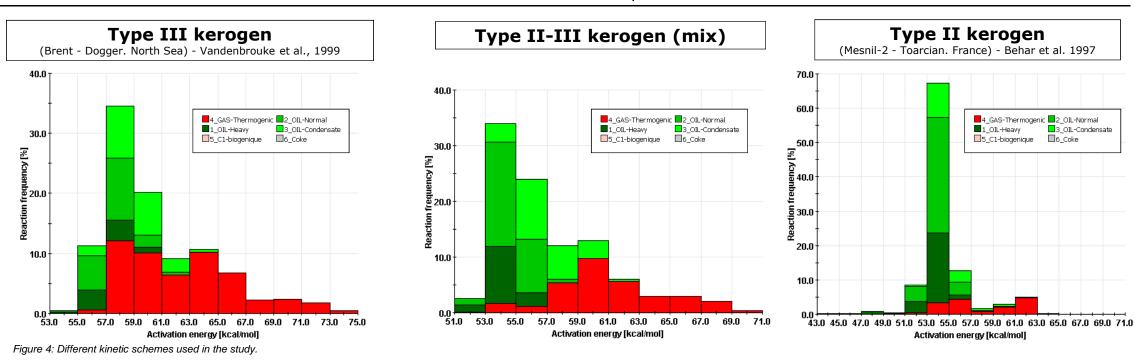

Density are empirically defined for each fraction, and calibrated with API gravity observed in the Nova Scotia Basin (PFA 2011).

Table 4: HC classes densities at surface conditions.

The gas densities are clearly affected by the presence of methane which is dominant in the Sable Sub Basin where calibration is possible.

Note that densities (and other parameters not presented here such as PVT parameters) are "average" values for each fraction.

These values are used for the calculation of volumes in surface conditions (0.1 MPa, 20°C).

Kinetic Scheme

Name

6_Coke

5_C1-biogenique

4_GAS-Thermogenic

3 OIL-Condensate

2 OIL-Normal

1_OIL-Heavy

(Table 3).

and coke.

lighter compounds.

Chemical Scheme

remains in the Source Rock laver.

Table 3: 6 classes scheme used in the study.

Kerogen maturation follows "kinetic schemes" specific to each kerogen type.

Kerogen Molar Weight[g/mol]

Maturation of initial kerogens can generate 6 families of chemical components.

18.04

16.0

18.0

120

230

300

IFP 6 classes - 5 mobile fractions (edited from IFPEN default library and from PFA 2011) used in the model

Two gas families (biogenic and thermogenic), three oil families (from the heavier compounds to the lighters)

A "mobile" fraction can migrate in reservoir layers, while an "immobile" fraction is solid or very viscous and

An "unstable" chemical fraction can be altered by secondary cracking. The secondary cracking generates

Compound Type

SOLID OM

HYDROCARBON

HYDROCARBON

HYDROCARBON

HYDROCARBON

HYDROCARBON

Mobility

IMMOBILE

MOBILE

MOBILE

MOBILE

MOBILE

MOBILE

Default Phase Thermal Stability

STABLE

STABLE

STABLE

UNSTABLE

UNSTABLE

UNSTABLE

LIQUID

VAPOR

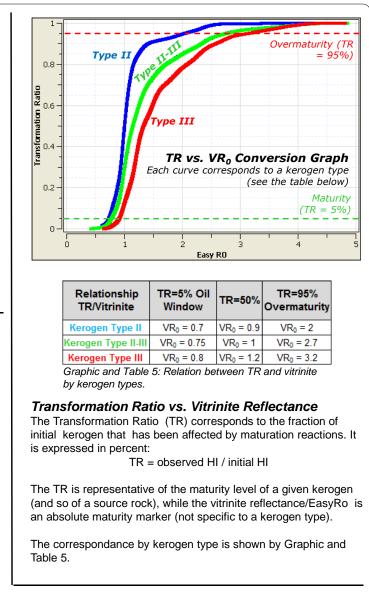
VAPOR

LIQUID

LIOUID

LIQUID

The maturation process is divided in "n" parallel chemical reactions which have their own reaction speeds. Reaction speeds on: the Activation Energy, the Arrhenius Coefficient (specific to each chemical reaction), and the temperature. Each reaction generates chemical fractions defined by the chemical scheme.


Figure 4 details the 3 kinetic schemes used in this study (Type III, Type II-III, Type II). These schemes were edited from the IFPEN Default Library (specific data not available for Nova Scotia). Secondary cracking reactions follow the same kind of kinetics laws.

Secondary Cracking

Following the Arrhenius Law, each unstable component can generate new chemical fraction that can be stable or unstable (and so, may generate other components by secondary cracking). Table 6 details the 3 kinetic schemes used in this study (heavy oil, normal oil and condensate). These schemes were edited from the IFPEN Default Library (specific data not available for Nova Scotia).

Name	Activation Energy[kcal/mol]	Pre-exponential Factor[1/s]	1_OIL-Heavy[%]	2_OIL-Normal[%]	3_OIL-Condensate[%]	4_GAS-Thermogenic[%]	5_C1-biogenique[%]	6_Coke[%]
▲ 1_OIL-Heavy	48	1E10		40	15	5	0	40
4 2_OIL-Normal	50.5	1E10	0		55	30	0	15
3_OIL-Condensate	66.5	3.85E16	0	0		75	0	25

Table 6: Secondary cracking scheme for heavy oil, normal oil and condensates

PL. 7.1.5

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

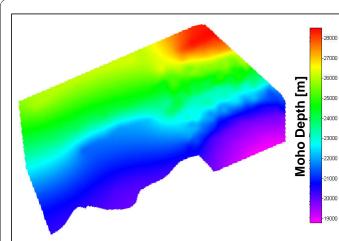
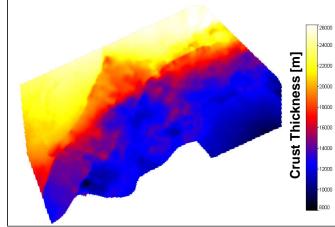



Figure 5: Moho depth.

Figure 6: Crust thickness.

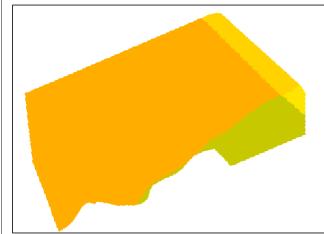


Figure 7: Upper crust lithologies distributions.

Other Basement Parameters

Initial Crust Thickness Before Rifting (Upper + Lower Crust)	42 km (cte)	Basement Structure Basement structure has a strong impact on thermal
Upper Crust / Total Crust (ratio in %)	60% (continental domain) 30% (oceanic domain)	modeling due to: - The rifting at the beginning of the modeling (about 220 to
Initial Lithosphere Thickness Before Rifting (crust + lithospheric mantle)	120 km (cte)	 196 Ma); The disintegration of radiogenic elements in the crust; The better constraint on the "Blancketing Effect" due to
Bottom Temperature (lithosphere / asthenosphere boundary)	1330 °C (cte)	high sedimentation rates.
Table 7: Basement parameters used	in the study.	Table 7 shows the parameters used in this study.

Moho Depth

Crust Thickness

The Moho depth (Figure 5) varies between 18 and 29 km in the study area (After Dehler and Welford 2013).

The thickness of the crust (Figure 6) in the model is calculated with the Moho depth map (After Dr. Sonia

Dehler from the GSC) and the Top Basement depth

map provided by seismic interpretation . This "top

autochtonous salt: pre-salt sediments (Triassic and

Average

Crust

Radiogeny

basement" corresponds to the base of the

older) are included in the Basement.

Upper Crust Lithology

upper_continental_crust_2

upper continental crust 4

upper_continental_crust_5

transition_crust

oceanic_crust

considered.

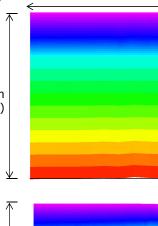
The Upper Crust lithology has a strong influence on the thermal modeling: the continental crust is usually rich in

radiogenic elements, while the oceanic crust does not

generate radiogenic heat. Different types of continental

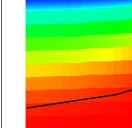
calibration with well data (from this study and PFA 2011).

crust with different content in radiogenic elements are

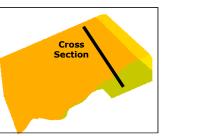

The repartition of crustal lithologies (Figure 7) is

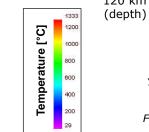
estimated with geophysical data (estimated rock densities, seaward dipping reflectors) and thermal

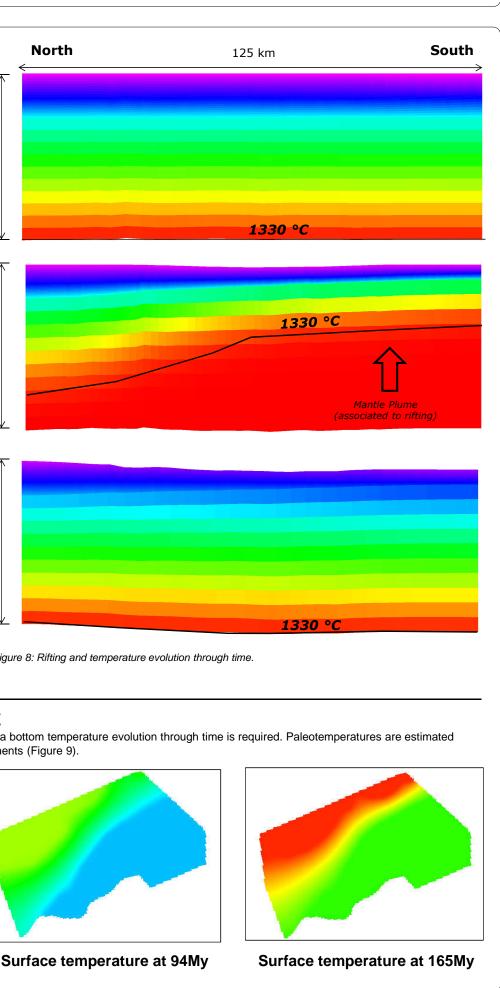
Rifting History at 3 key ages (Figure 8)


Before Rifting (220 Ma)

Relatively uniform temperature field. 1330°C at the base of the lithosphere (base of the model).

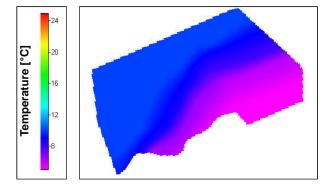

After Rifting (197 Ma)

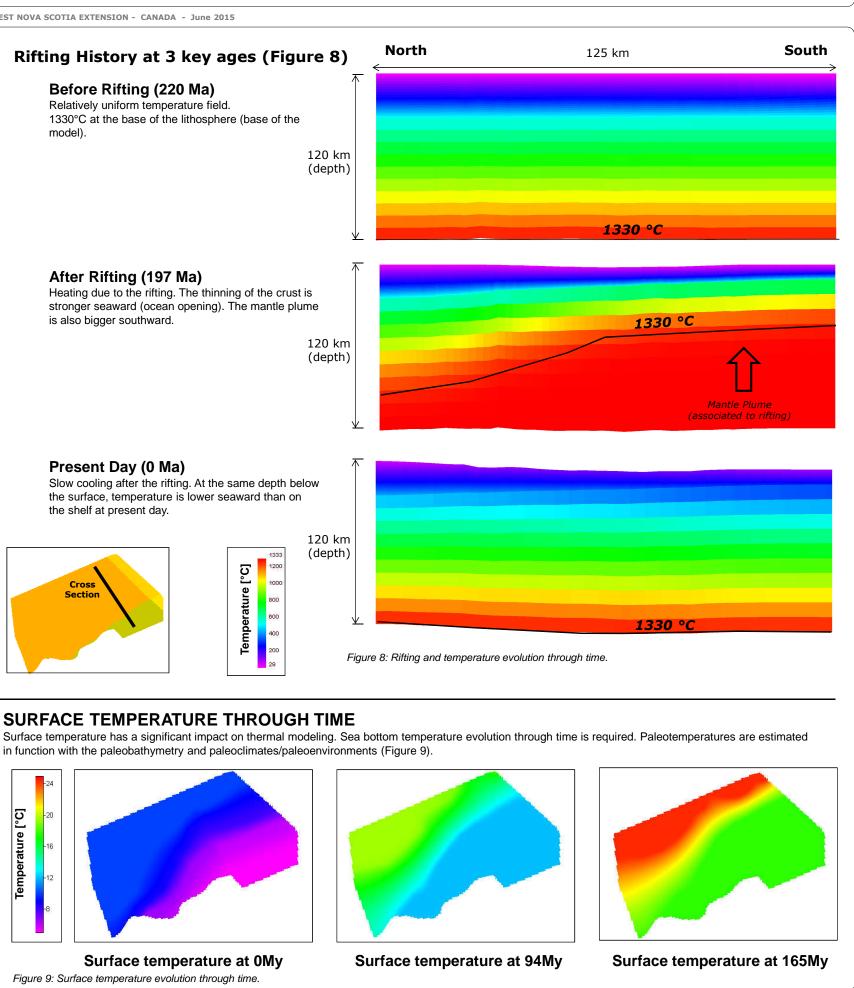

Heating due to the rifting. The thinning of the crust is stronger seaward (ocean opening). The mantle plume is also bigger southward.



Present Day (0 Ma)

Slow cooling after the rifting. At the same depth below the surface, temperature is lower seaward than on the shelf at present day.





SURFACE TEMPERATURE THROUGH TIME

in function with the paleobathymetry and paleoclimates/paleoenvironments (Figure 9).

Surface temperature at 0My Figure 9: Surface temperature evolution through time.

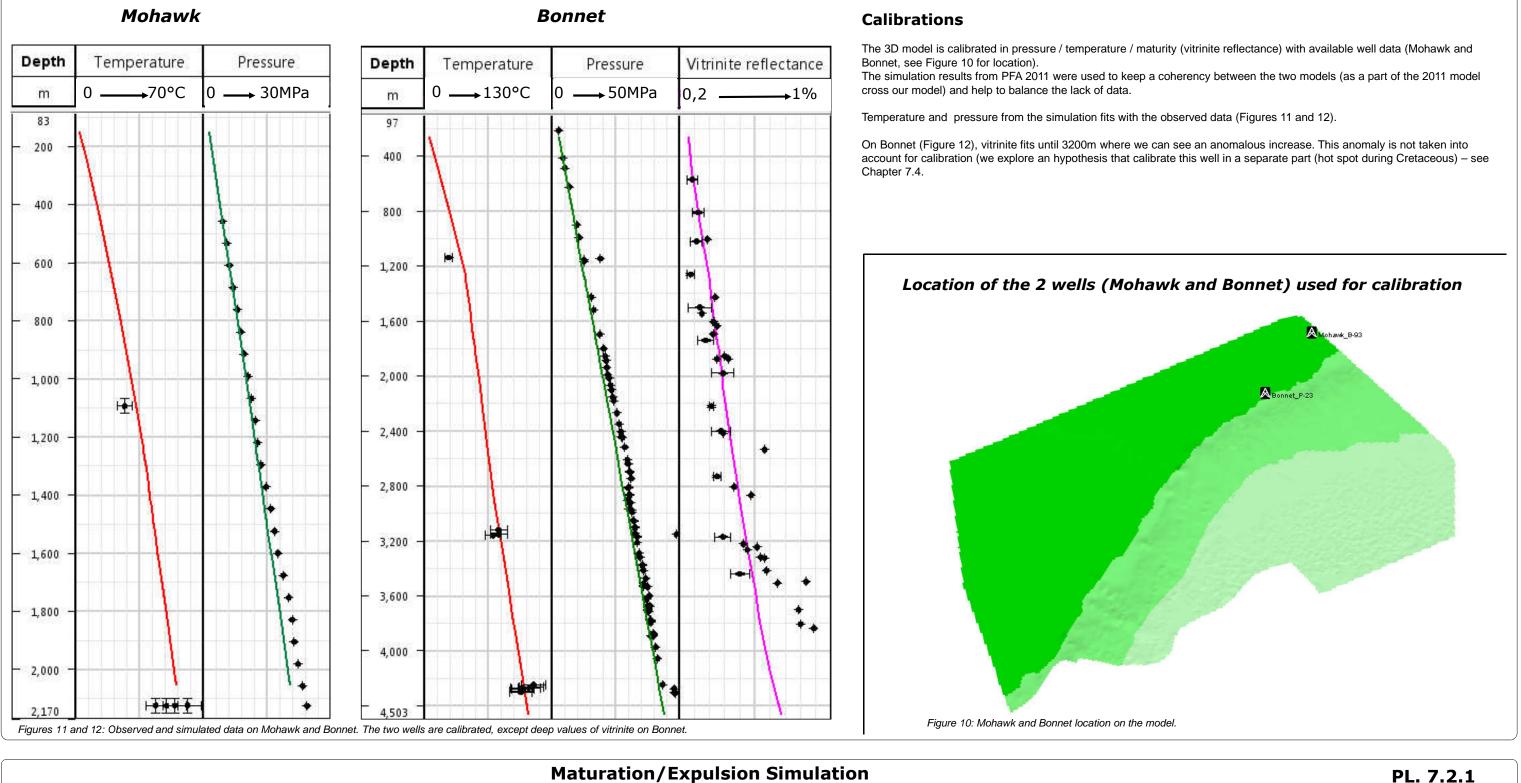
Model Building

PL. 7.1.6

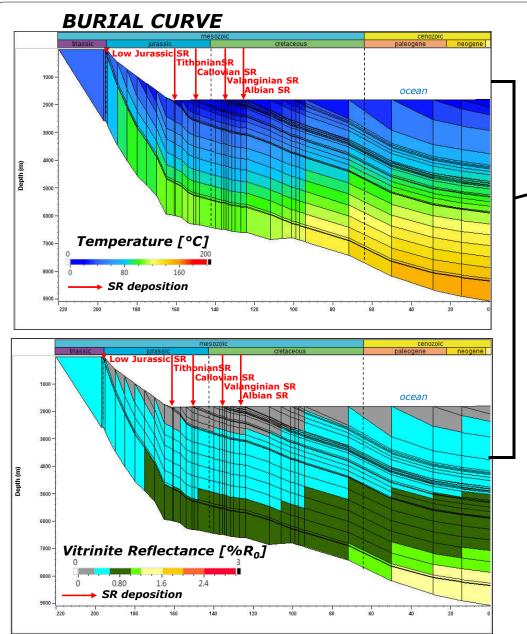
CHAPTER 7.2

BASIN MODELING – MATURATION/EXPULSION SIMULATION

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015


The 1st modeling stage consists in the temperature, pressure, maturity, and expulsion modeling, with the basin modeling software Temis Flow 3D®.

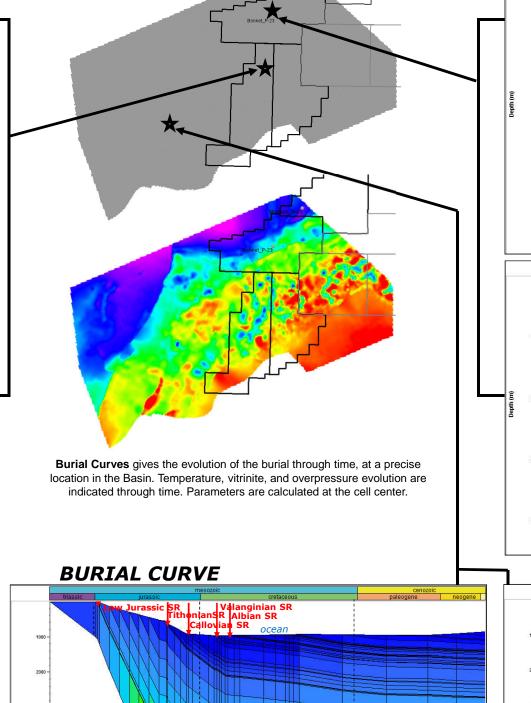
The evolution of the whole 3D block (geological model) is simulated through geological times:

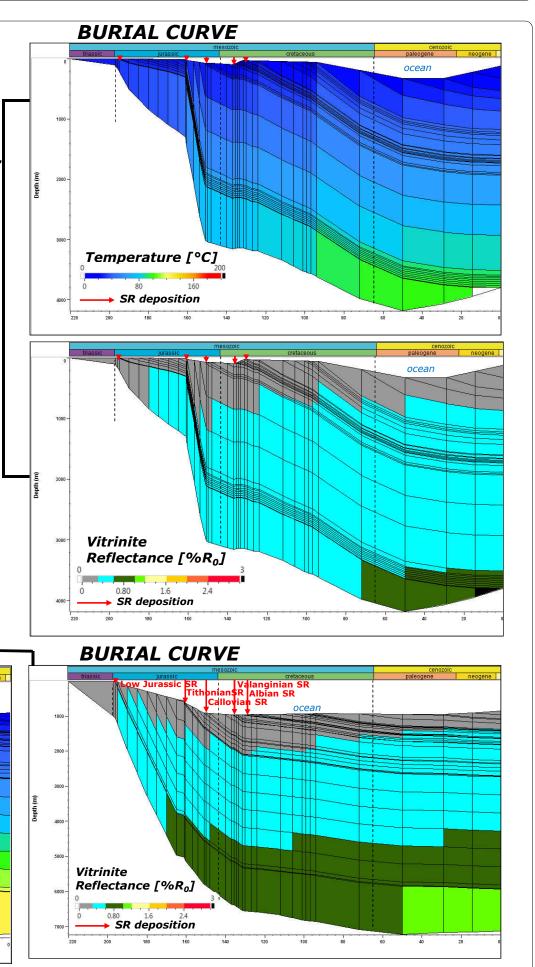

→ Modeling of progressive burial due to sedimentation

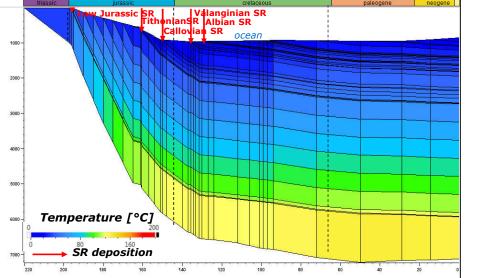
- → Sediment compaction with the "back stripping method"
- → Structural evolution (uplift, subsidence, normal faults activity, etc.)
- \rightarrow Water flow modeling
- \rightarrow Rifting of the lithosphere (thermal effect on the sedimentary basin)
- \rightarrow Computation of temperature and pressure through time in the whole 3D block
- \rightarrow Computation of SR maturity through time
- \rightarrow Computation of HC expulsion through time (primary migration)

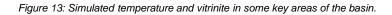
Results will be used for the migration modeling and analysis (maturity, porosity, etc...).

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

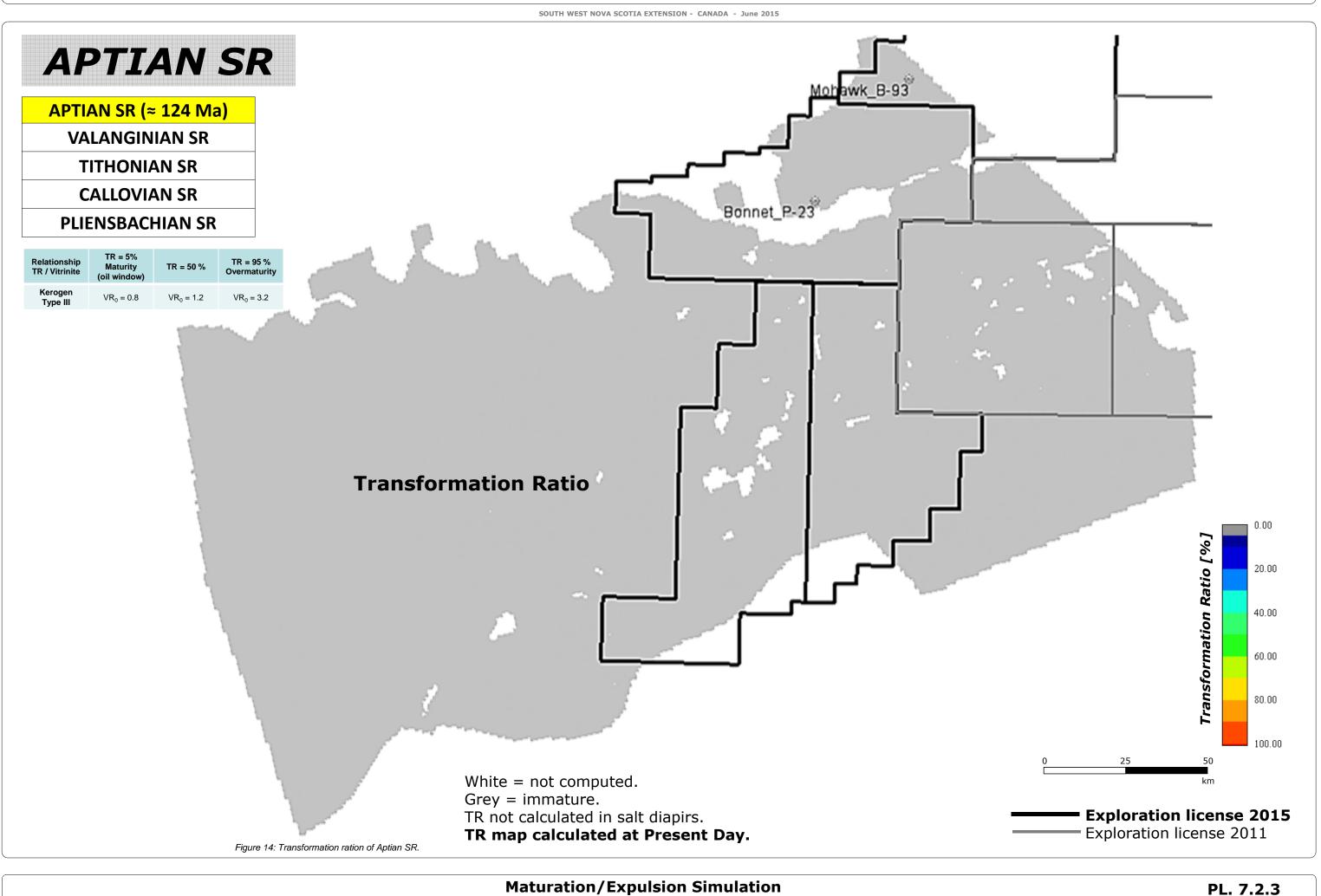


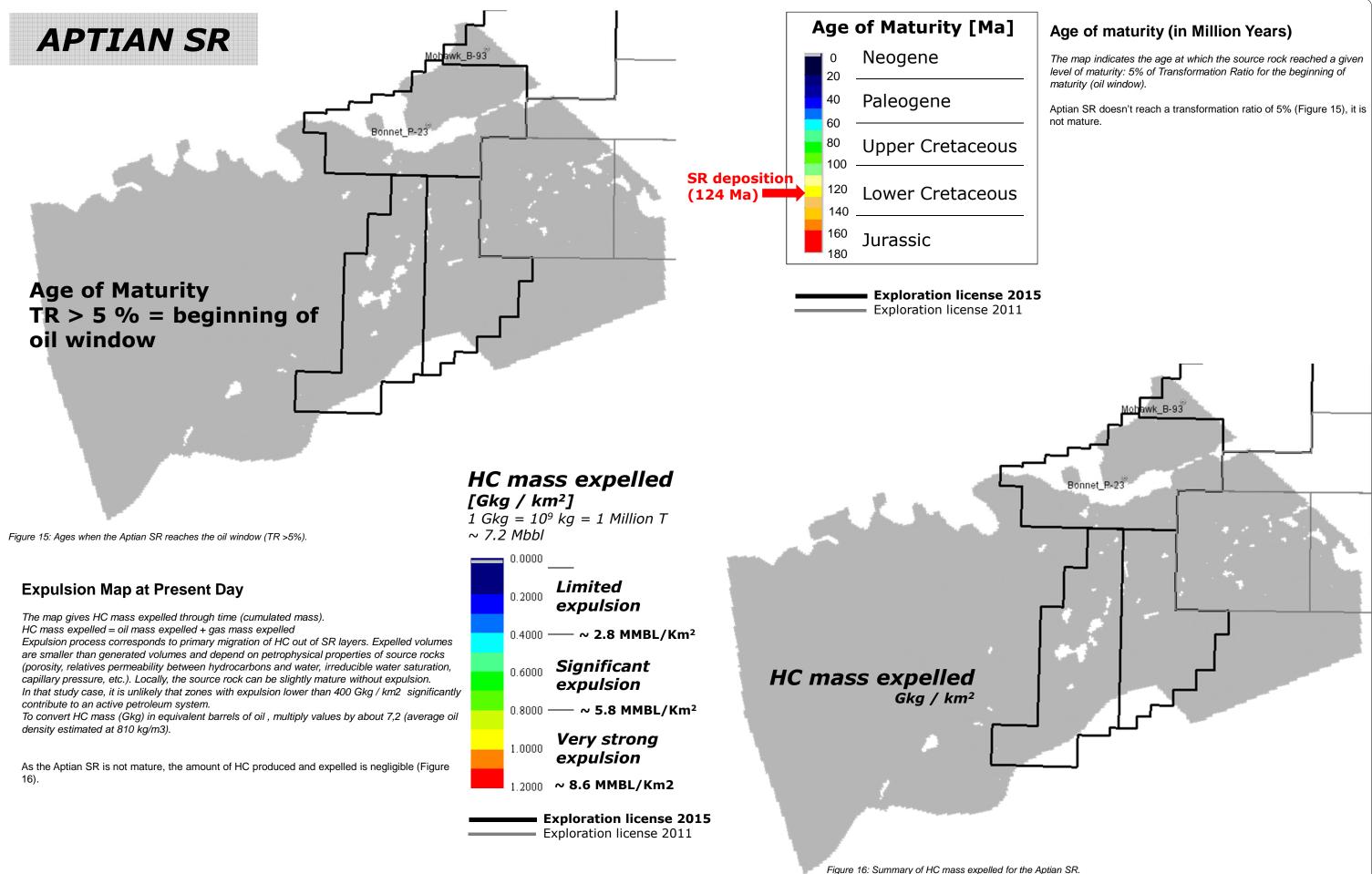

Temperature

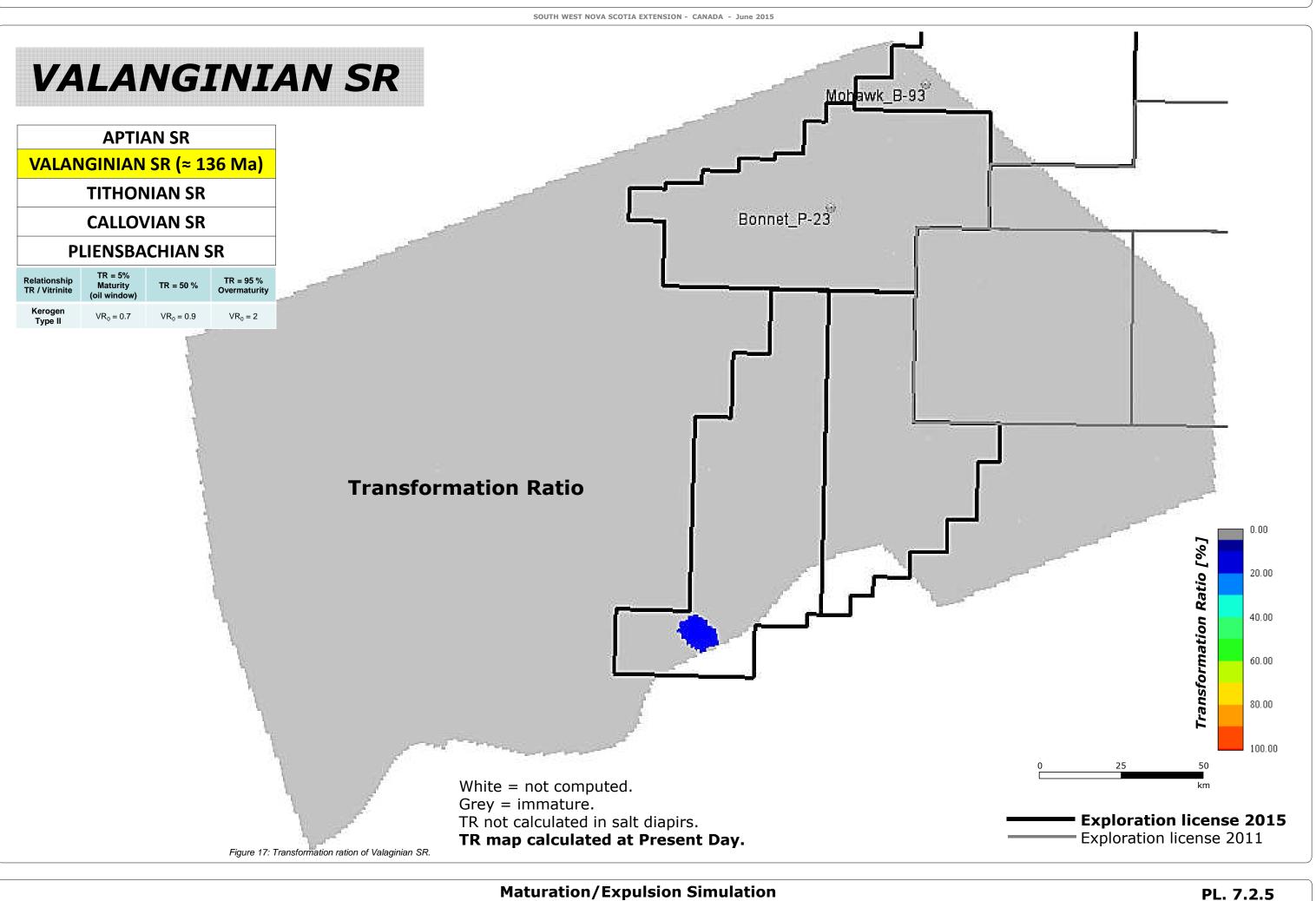

Temperature (Figure 13) are relatively low in that basin. The temperature reaches 180°C -190°C in deepest part of the basin (due to salt movement, see depth map). At this temperature and with this history, we can expect mostly oil. Secondary cracking will be also limited.

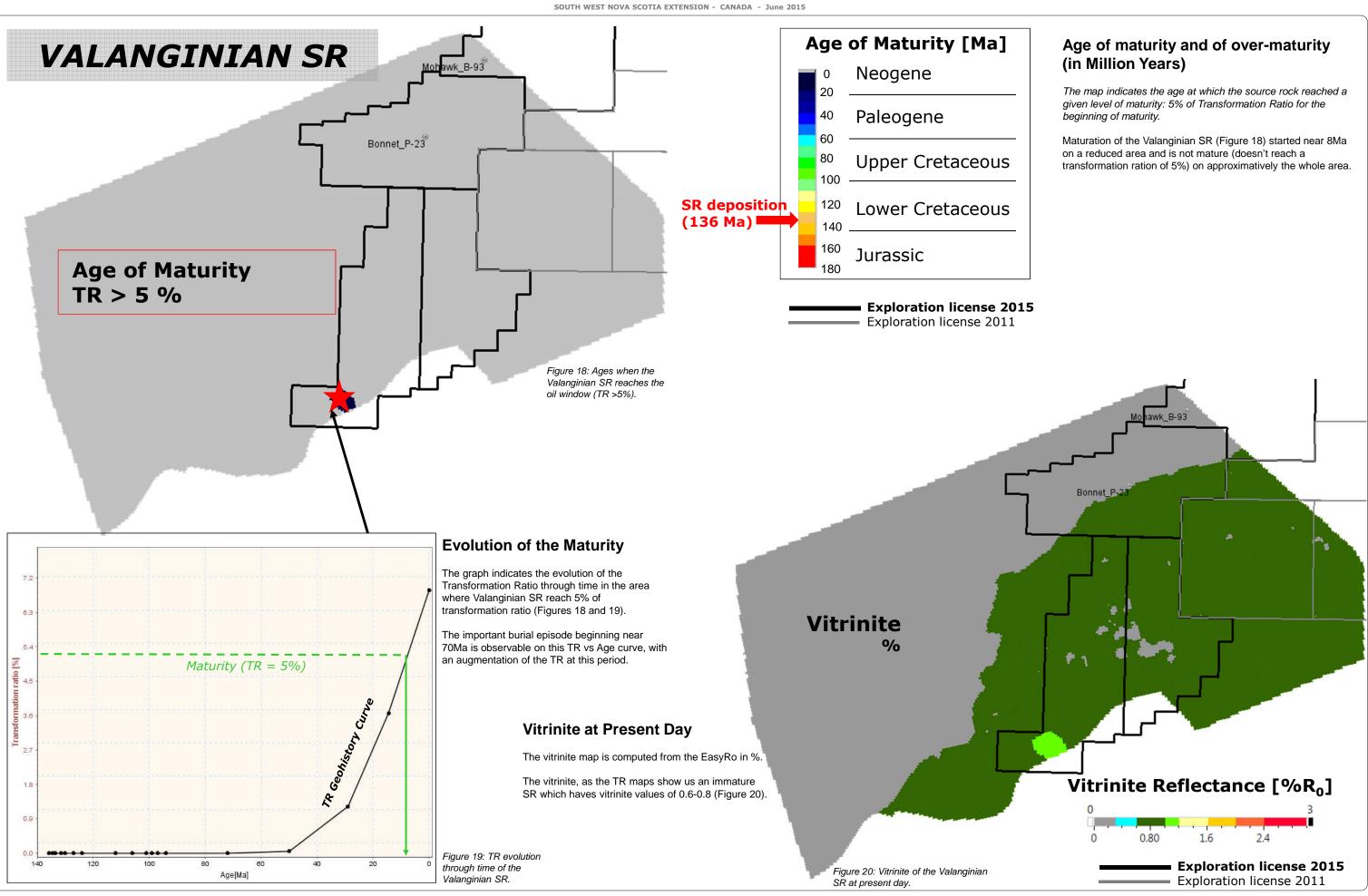

Vitrinite

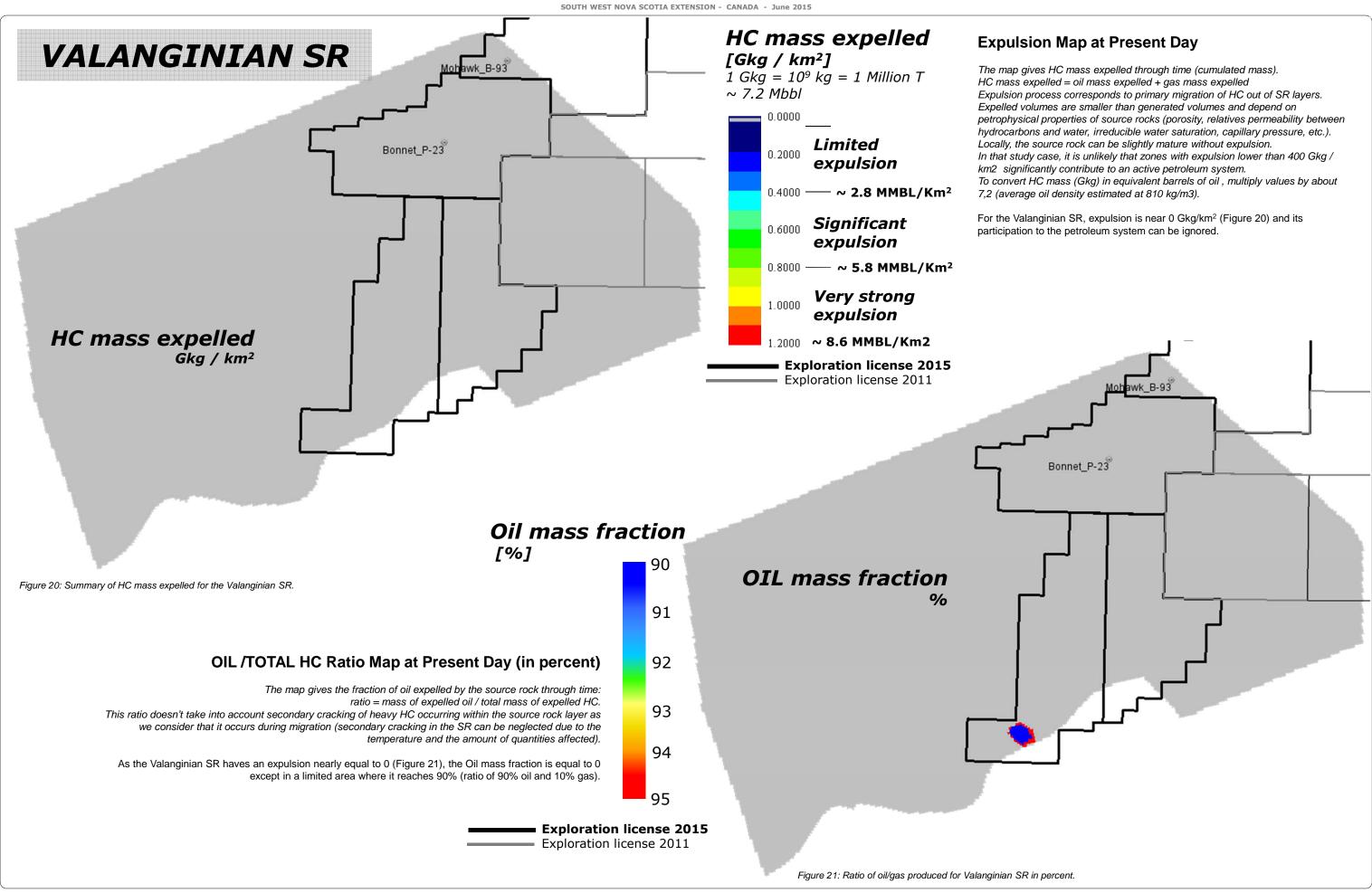
Vitrinite (Figure 13) shows that the Low Jurassic SR is mature in the basin and reaches the oil window (> 1%) near end Cretaceous (90-70My) or Paleogene, depending on depth. Callovian and Tithonian SRs are at the beginning of oil window (0.6%) and reach it at Paleogene or later. Valaginian and Albian SRs are not mature. Gas window is reach only in deepest parts of the basin and only on Low Jurassic SR.



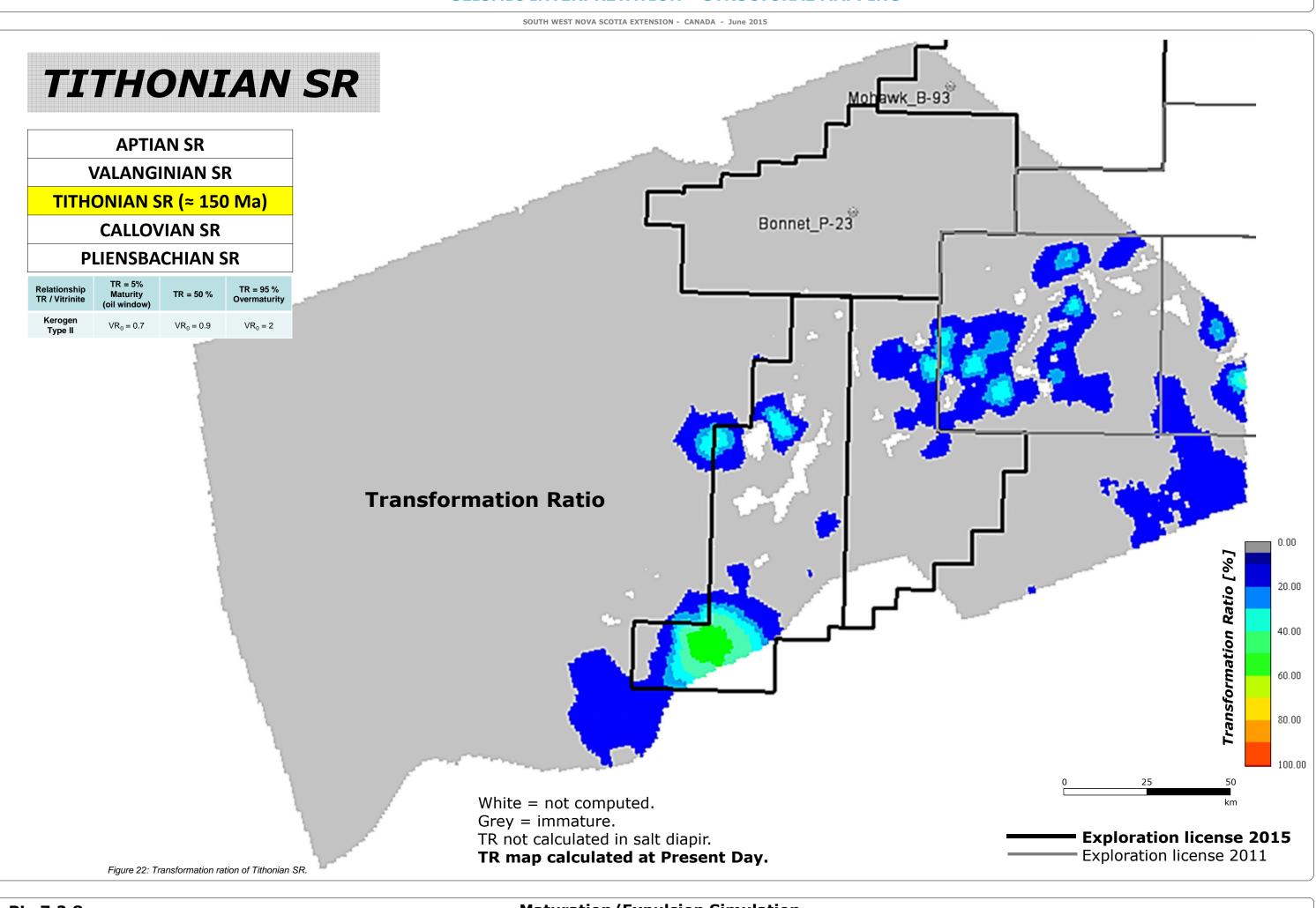


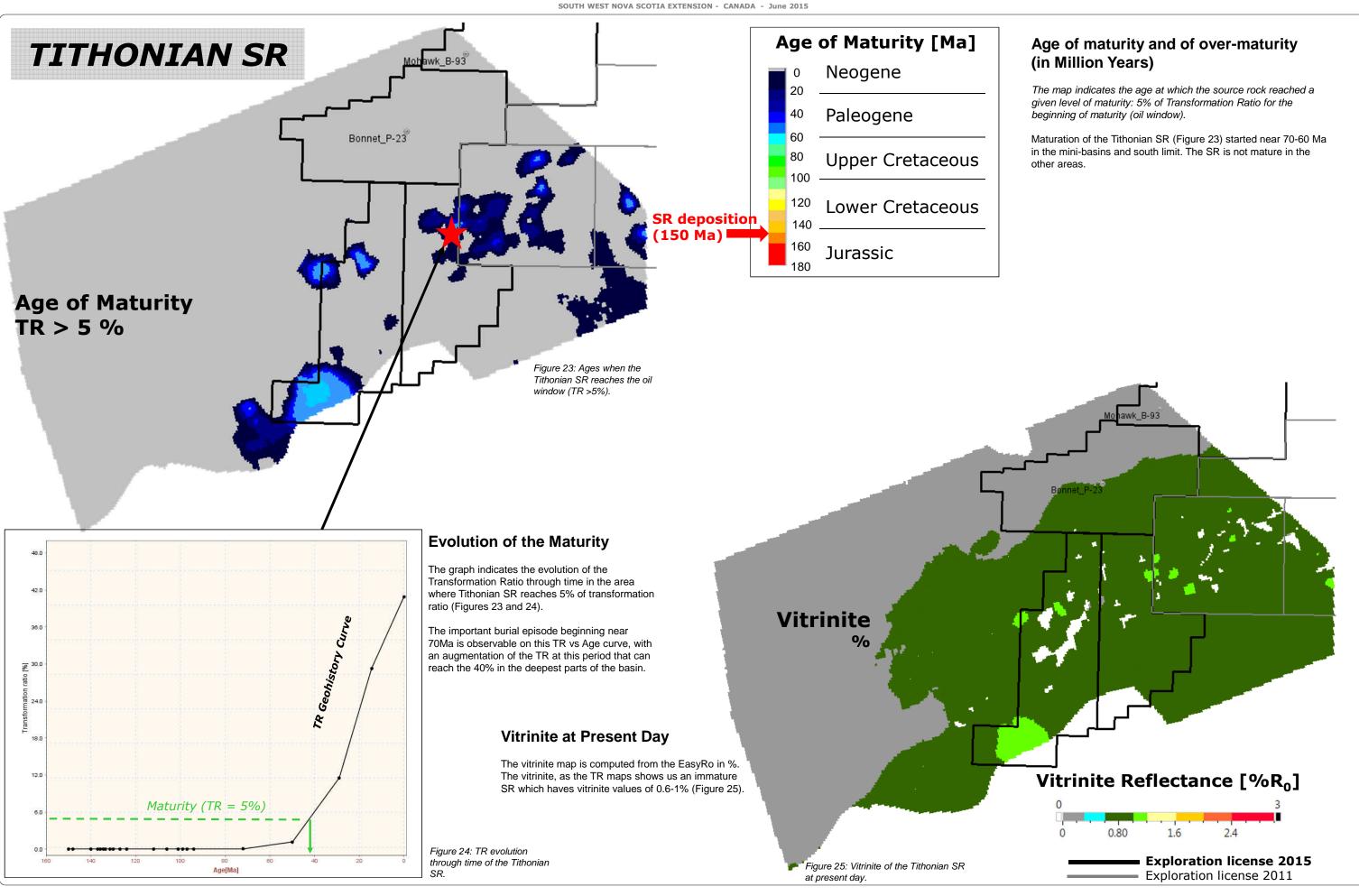



PL. 7.2.2

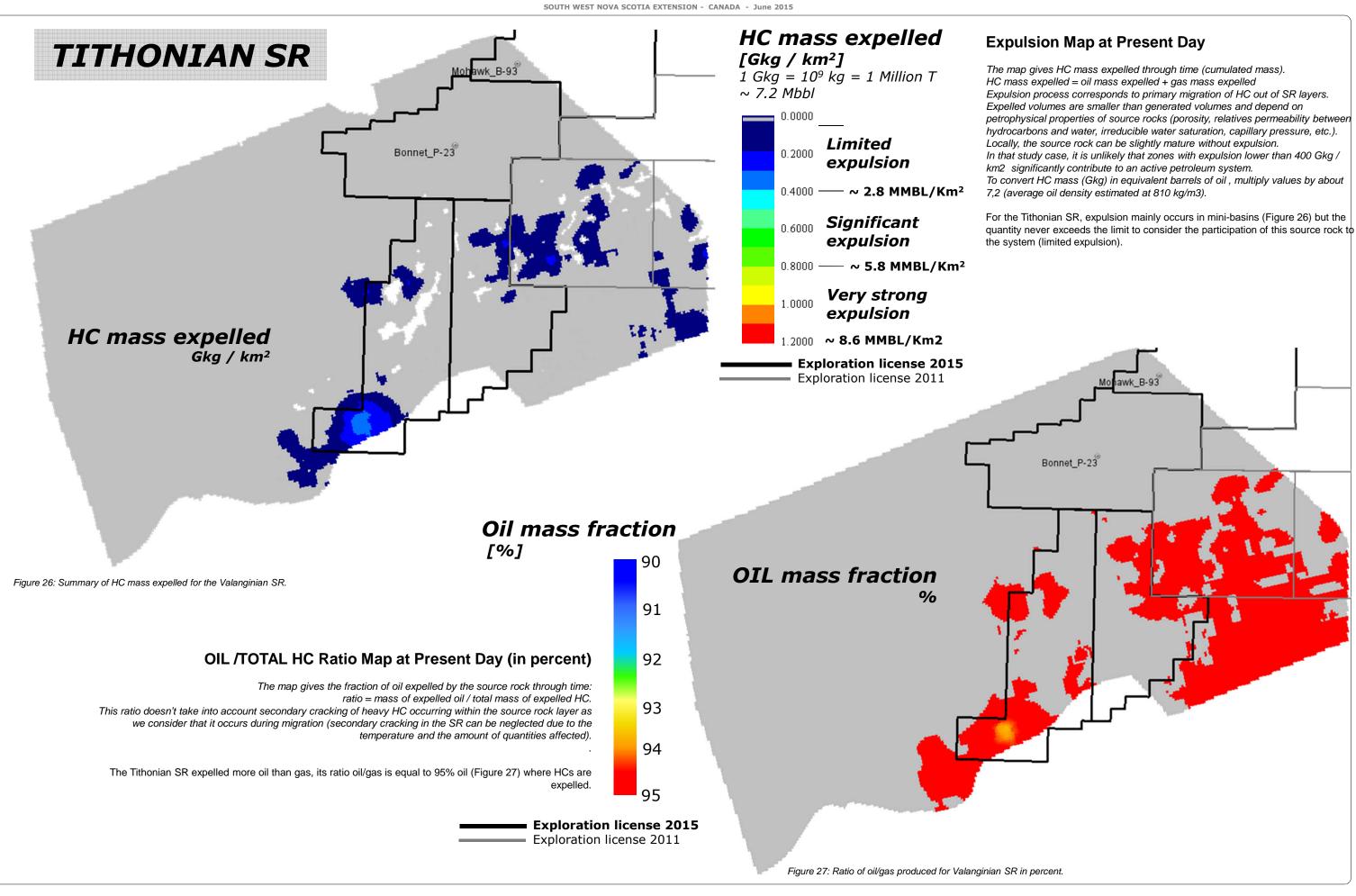


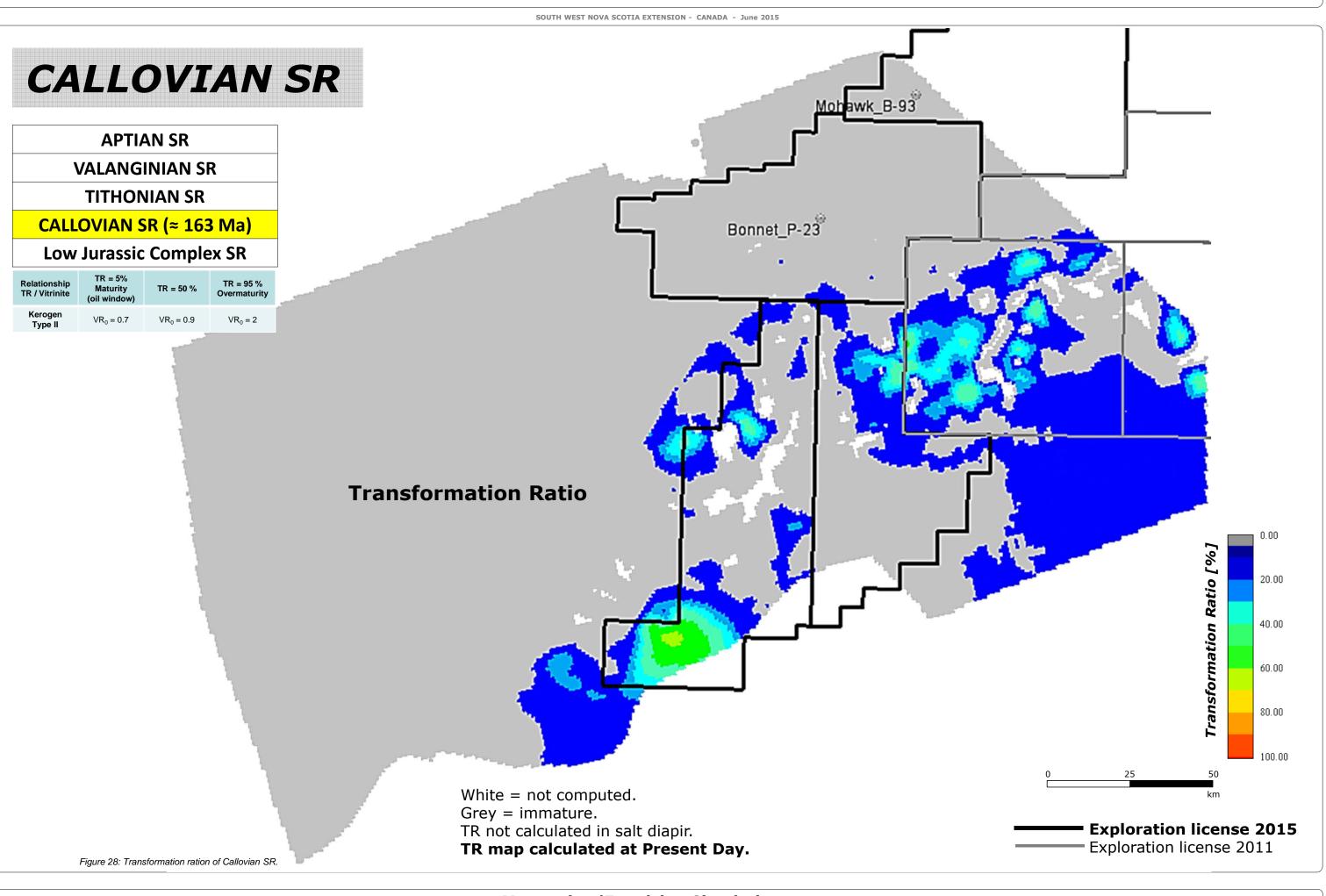
SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015



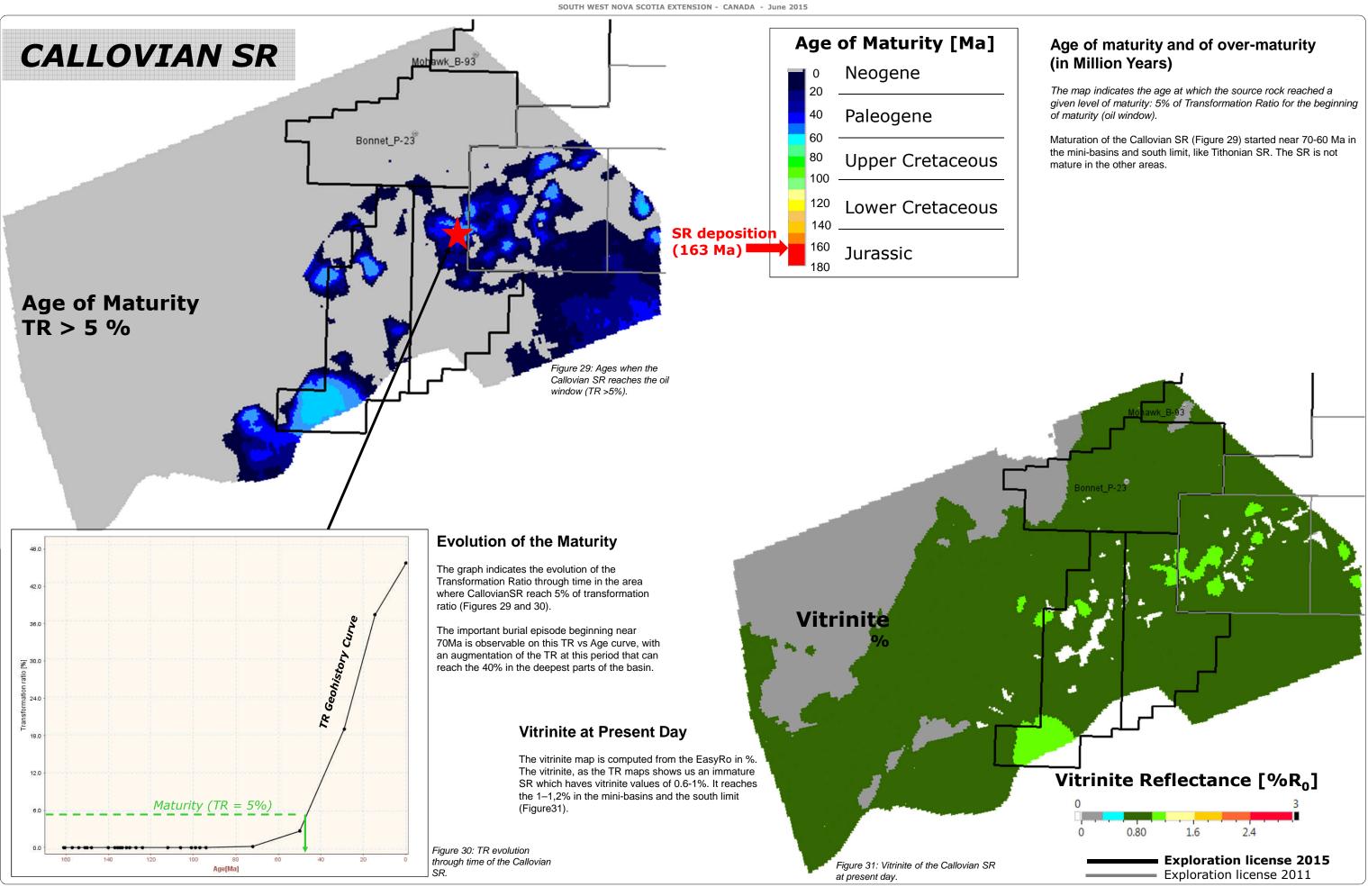


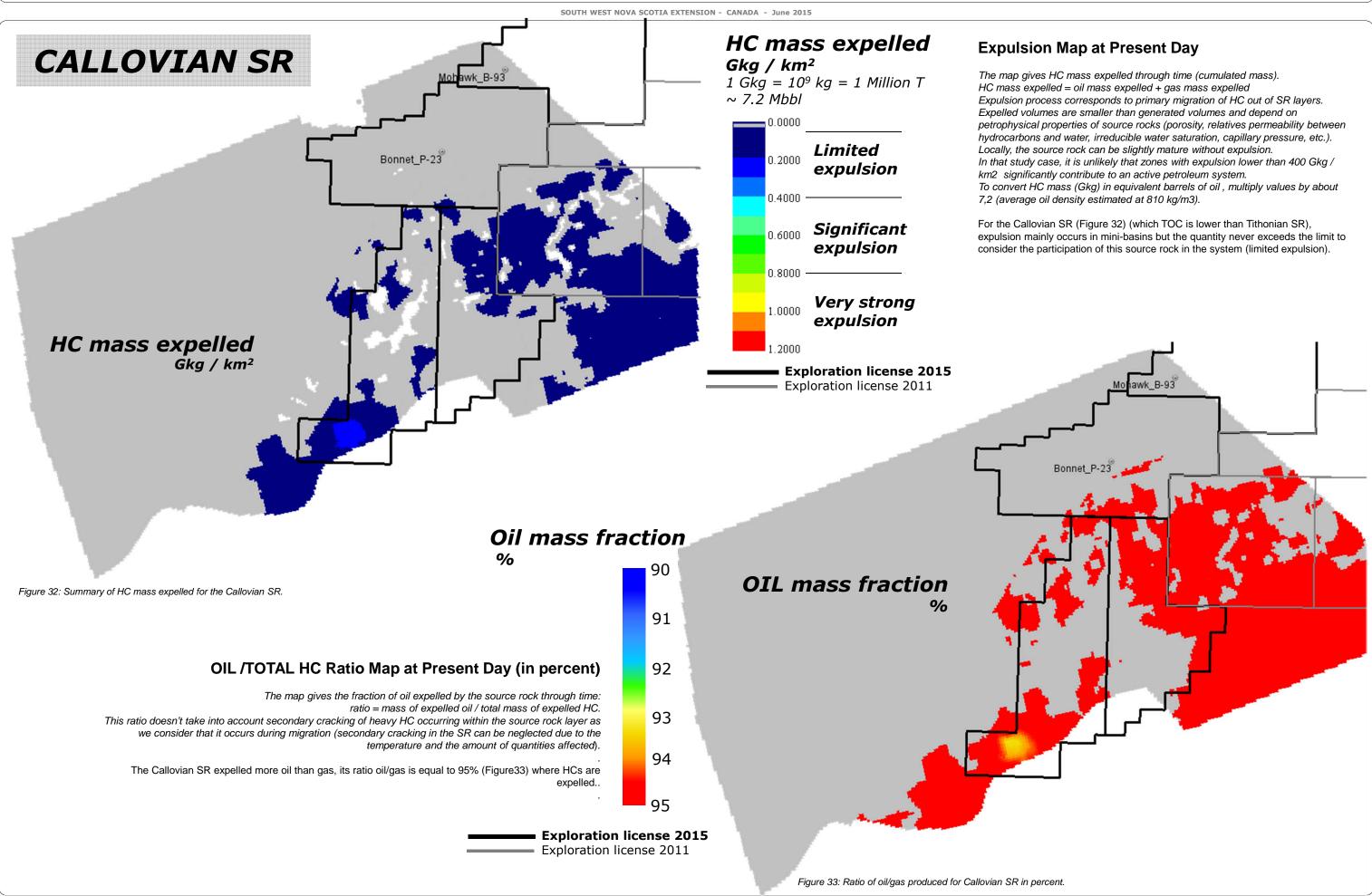
Maturation/Expulsion Simulation

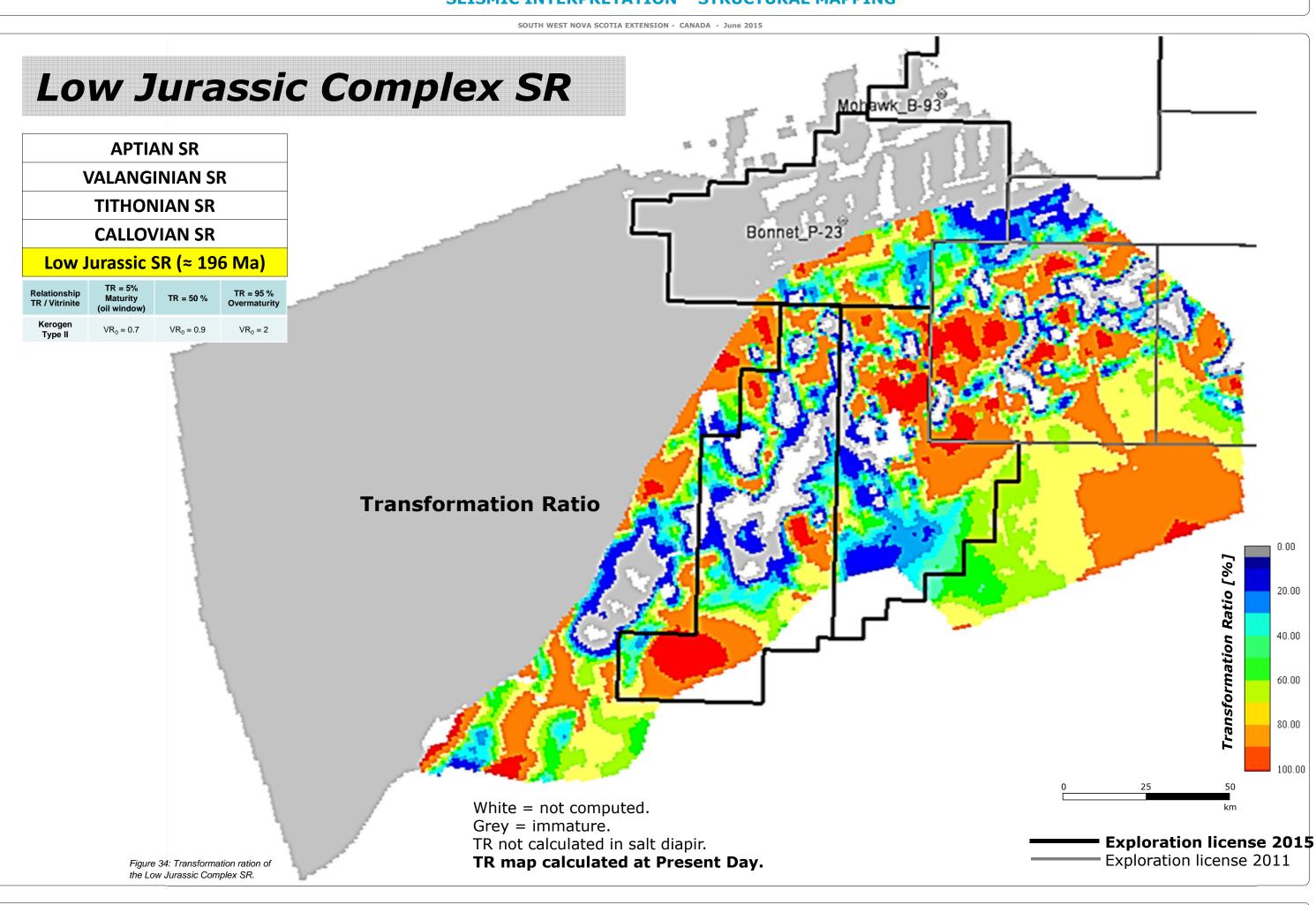

PL. 7.2.7



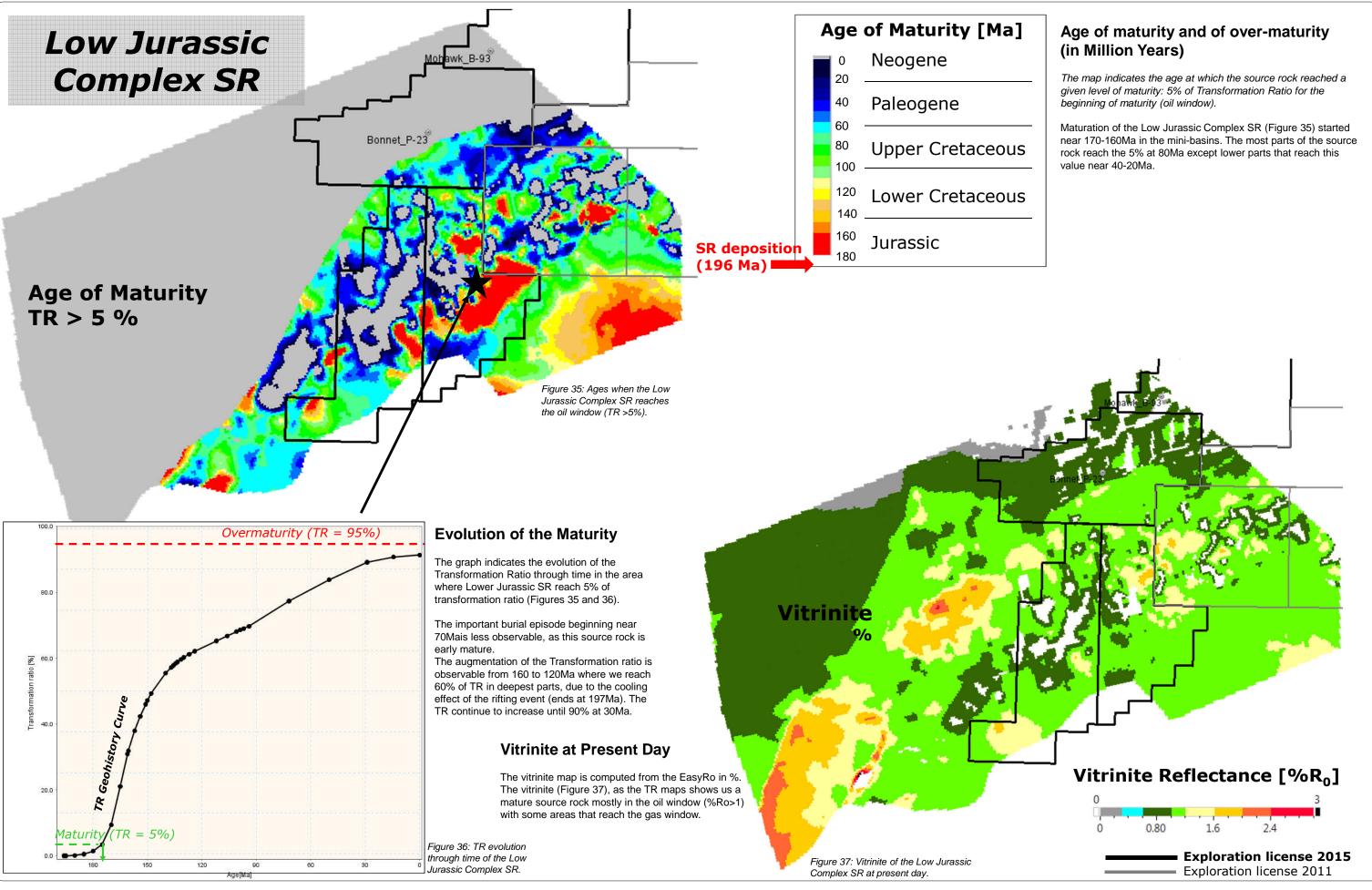
Maturation/Expulsion Simulation


PL. 7.2.9

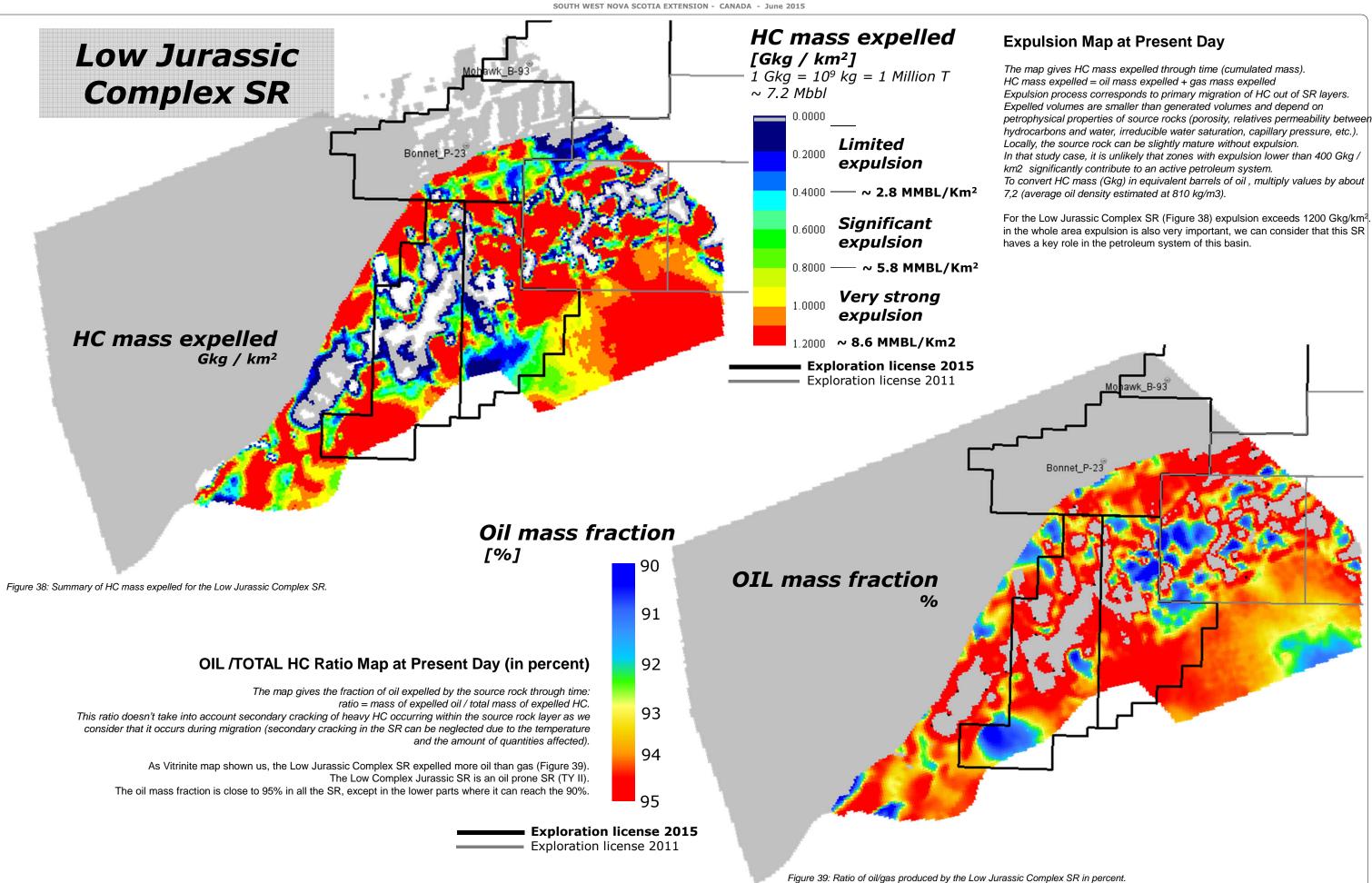



Maturation/Expulsion Simulation

PL. 7.2.11



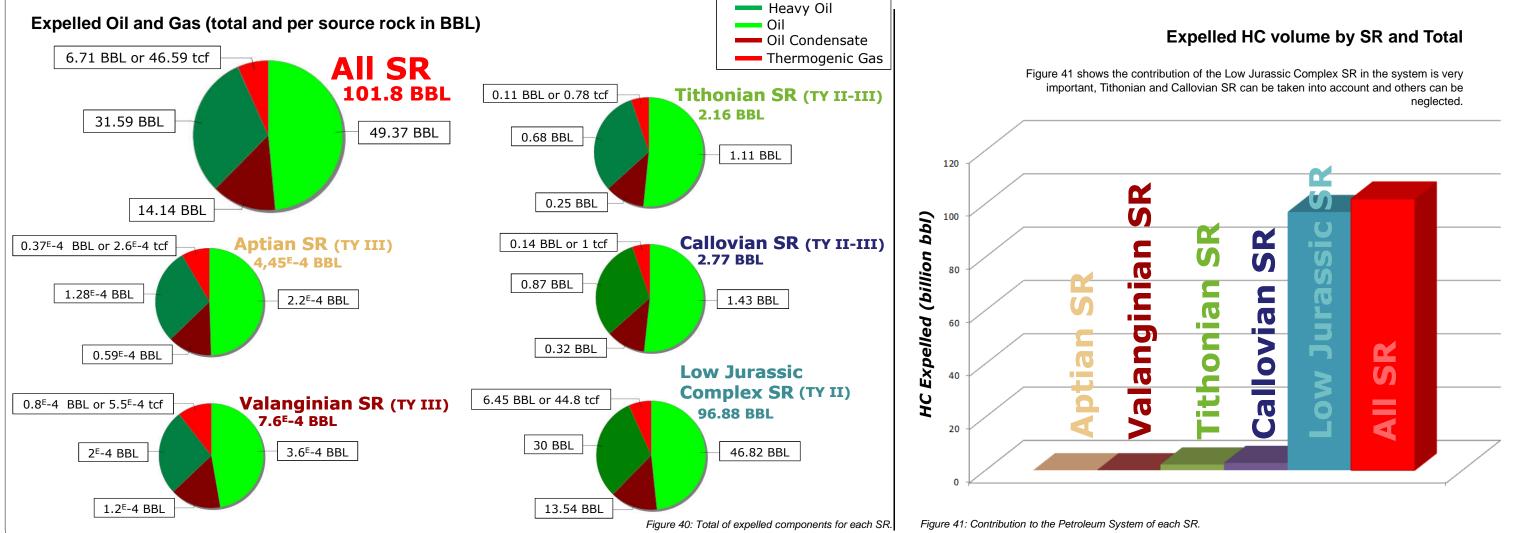
PL. 7.2.13



SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

Maturation/Expulsion Simulation

PL. 7.2.15



SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

	Total OIL-Heavy Expelled Mass Cell [Gkg]	Total OIL-Normal Expelled Mass Cell [Gkg]	Total OIL- Condensate Expelled Mass Cell [Gkg]	Total GAS- Thermogenic Expelled Mass Cell [Gkg]	Total C1- biogenique Expelled Mass Cell [Gkg]	Total mass of HC expelled [Gkg] in oil equivalent	Total mass of C expelled [BB bb
All SR	4387,00	6857,00	1964,00	931,80	0,00	14139,80	95,0976
Aptian	0,02	0,03	0,01	0,01	0,00	0,06	0,0004077
Valanginian	0,03	0,05	0,02	0,01	0,00	0,11	0,000680688
Tithonian	94,47	154,70	34,90	15,62	0,00	299,69	2,045304
Callovian	120,50	198,80	45,16	20,07	0,00	384,53	2,624112
Low Jurrasic Complex SR	4172,00	6503,00	1884,00	896,10	0,00	13455,10	90,4248

Expelled HC masses - By SOURCE ROCK (Table 8, Figures 40 and 41)

This ratio doesn't take into account secondary cracking of heavy HC occurring within the source rock layer as we consider that it occurs during migration (secondary cracking in the SR can be neglected due to the temperature and the amount of quantities affected).

Maturation/Expulsion Simulation

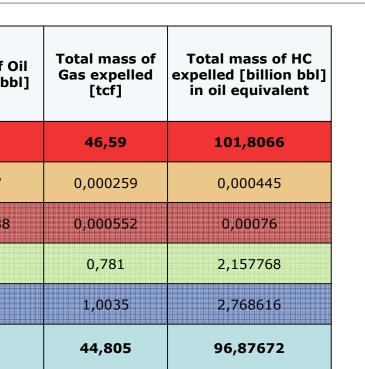
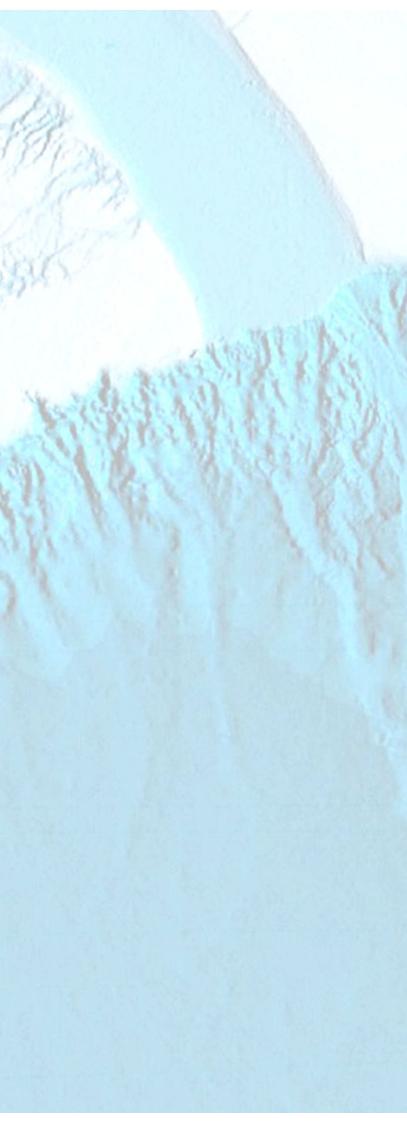
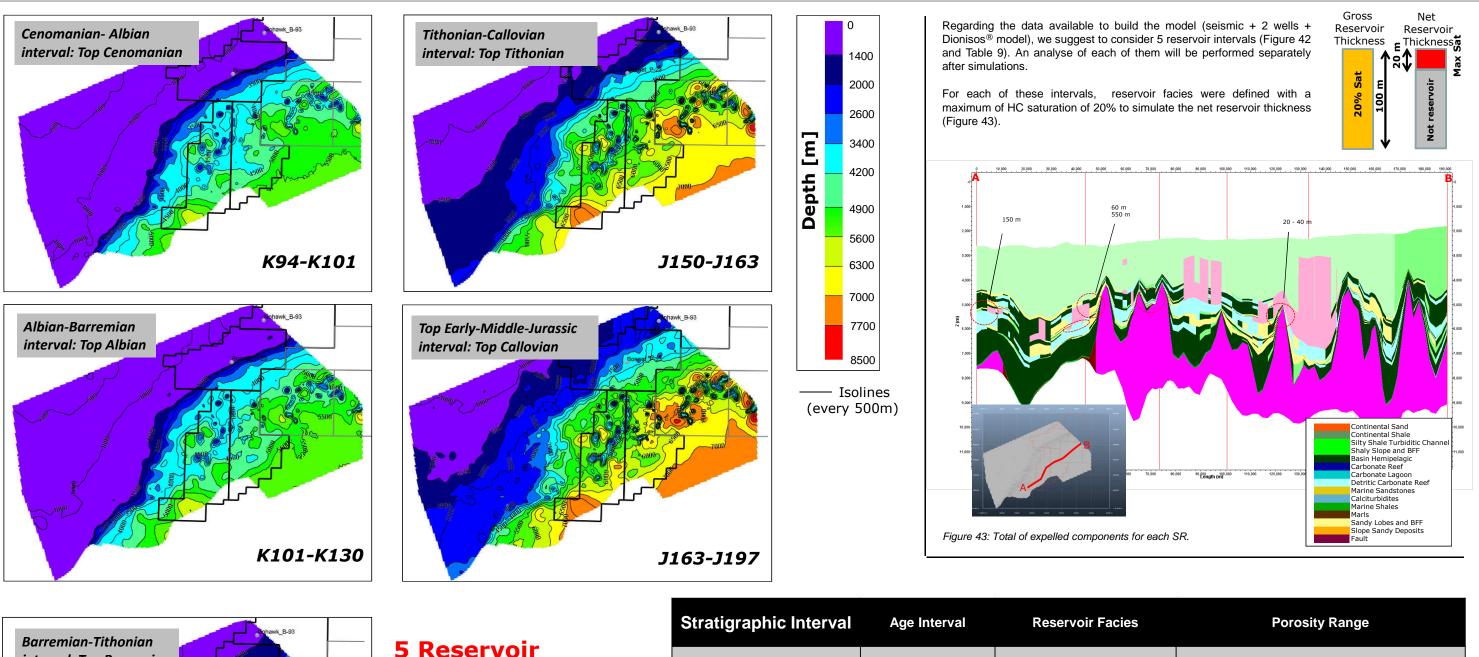
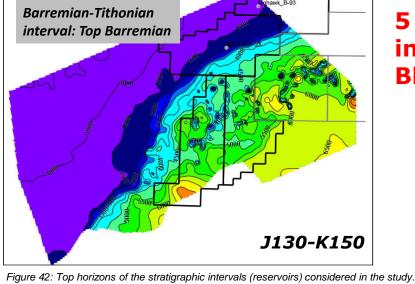



Table 8: Total of expelled components for each SR.


PL. 7.2.17


CHAPTER 7.3

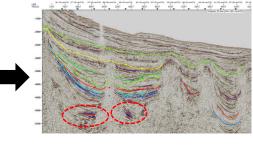
BASIN MODELING - MIGRATION SIMULATION

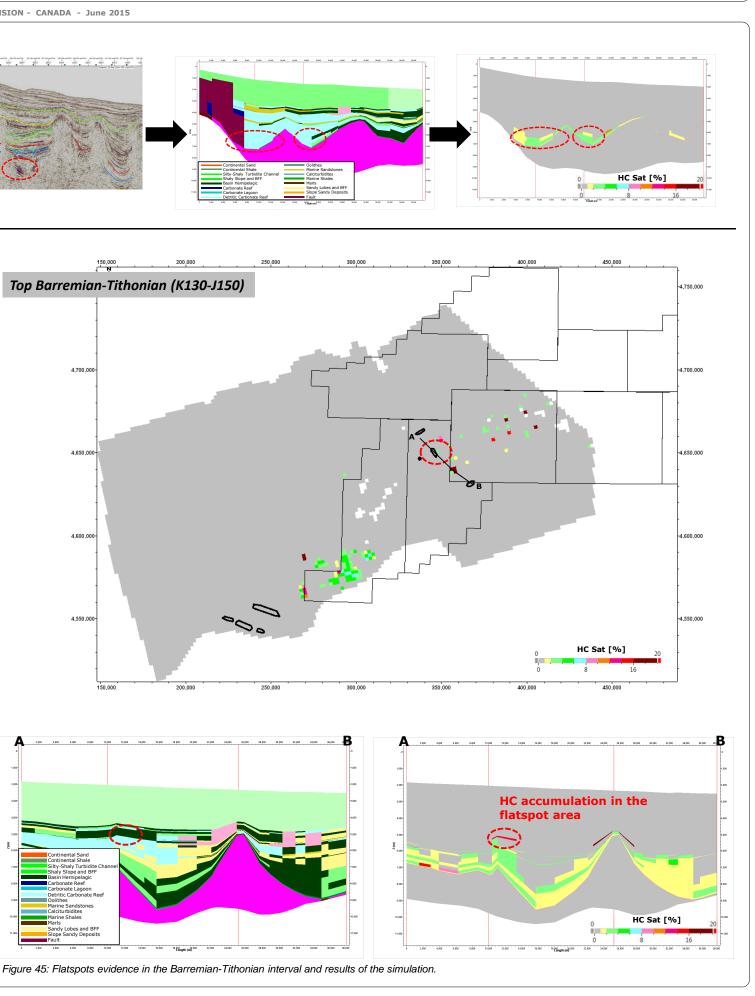
SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

5 Reservoir intervals in the 3D Block.

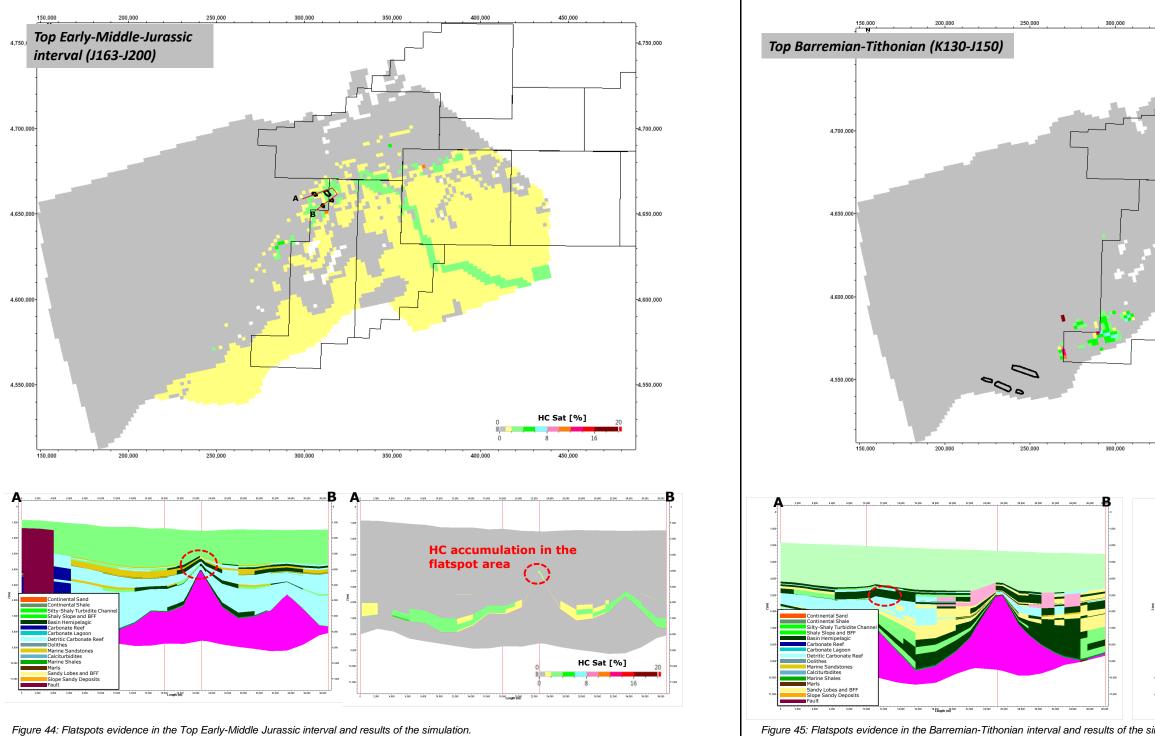
Stratigraphic Interval	Age Interval	Reservoir Facies	Porosity Range
Cenomanian-Albian	101-94 Ma	Calciturbidites, detritic carbonates and Sandy turbidites.	Sandstone on the platform keeps a high porosity. In the basin, the reservoirs have a porosity of 10-15%,for carbonates and 14-20% for sandstones
Albian-Barremian	130-101 Ma	Calciturbidites, detritic carbonates and Sandy turbidites.	Sandstone on the platform keeps a high porosity. In the basin, the reservoirs have a porosity of 10-15%,for carbonates and sandstones
Barremian-Tithonian	150-130 Ma	Calciturbidites, detritic carbonates and Sandy turbidites.	Sandstone on the platform keeps a high porosity. In the basin, the reservoirs have a porosity of 10-15%,for carbonates and sandstones
Tithonian-Callovian	163-150 Ma	Calciturbidites, detritic carbonates and Sandy turbidites.	Sandstone on the platform keeps a high porosity on the platform. In the basin, the reservoirs have a porosity of 9-13%.
Early-Middle-Jurassic	197-163 Ma	Carbonate Breccia, Reef facies, Detritic carbonate deposits and Sandy turbidites basinward.	Sandstone on the platform keeps a high porosity on the platform. In the basin, the reservoirs have a porosity of 6-11% (10% for carbonate breccia).

PL. 7.3.1


Table 9: Description of stratigraphic intervals (reservoirs) considered.


Migration Simulation

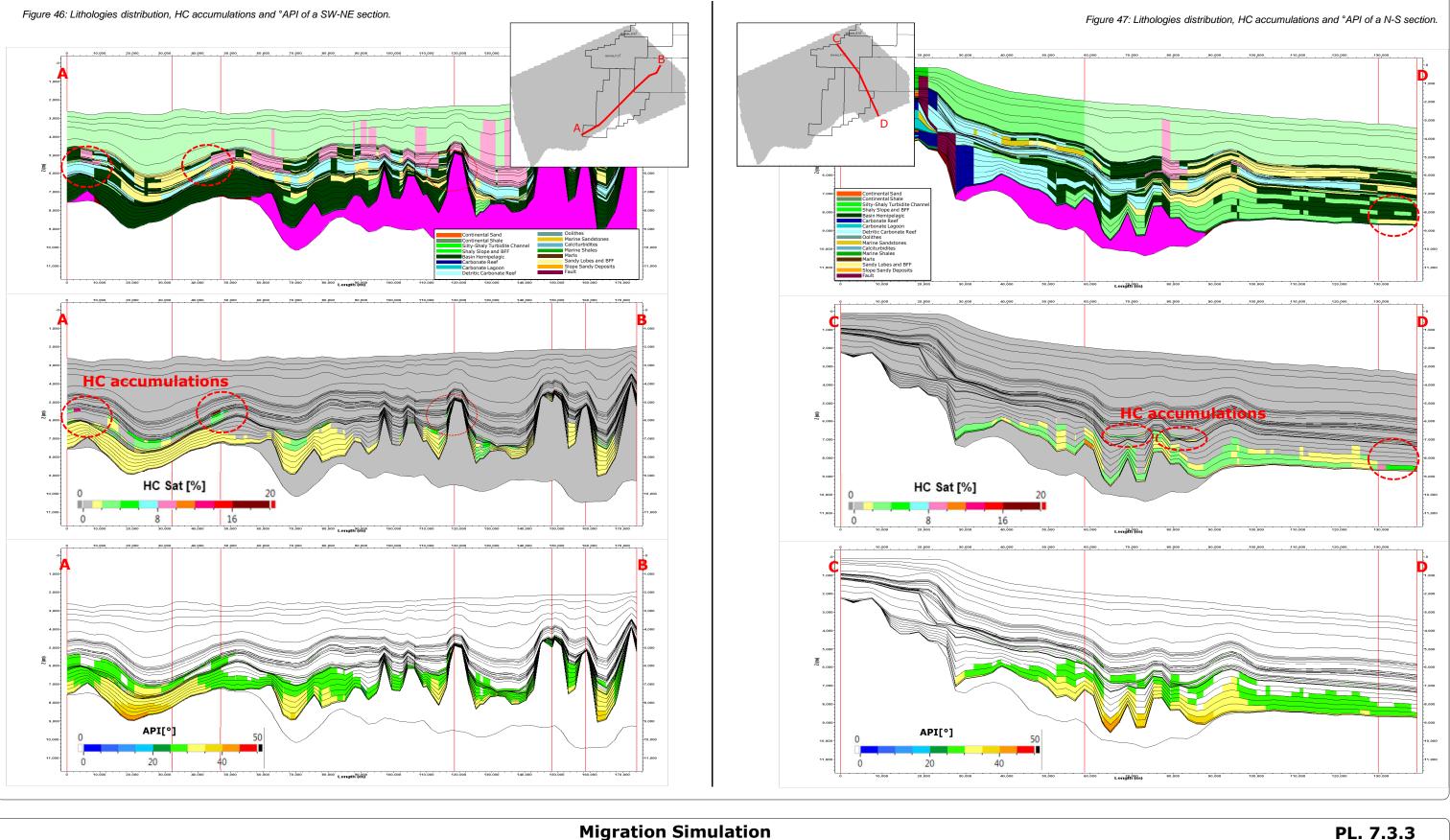
SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

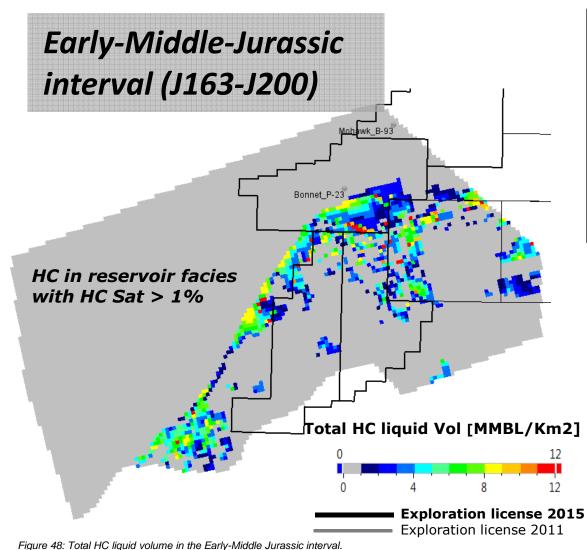

Calibration using Hydrocarbon indices

The migration model is calibrated using hydrocarbon indices (flatspot) seen on the 2D seismic. The model ties to accumulate HCs in the area of stratigraphic interval where flatspots were detected. HCs accumulations are mostly located in traps (stratigraphic or salt related traps) in these intervals and some of these traps show the presence of flatspots.

Figures 44 and 45 show some exemples.

PL. 7.3.2


Migration Simulation


SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

Migration Results

The migration model shows several traps related to stratigraphy (carbonate breccia, reef facies, sandy turbidites, ...) and related to salt (near salt diapirs and under salt canopies). Sections from the 3D result illustrates some examples of these traps. API° is between 25-35 with a maximum of 40 in the deepest zones.

Figures 46 and 47 show two sections from results that give some examples of traps and an idea of the API.

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

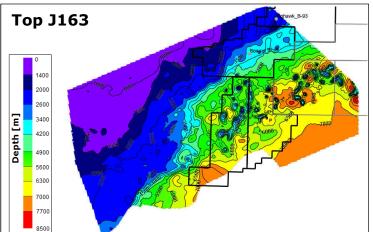


Figure 43: Depth map of J163 (top of Early-Middle Jurassic interval).

Early-Middle Jurassic Play: Location: Base of the slope and depth basin Reservoir: Carbonate Breccia, Reef facies, Detritic carbonate deposits and Sandy turbidites basinward (Figure 49). HC Source: Lower Jurassic SR Trap Style: Tilted block, lateral pinch-out against the slope or salt diapirs.

Early-Middle Jurassic interval shows important accumulations (up to 23 BBL - see Table 10) near the slope in facies reservoir (carbonates and sand) (Figures 48 and 49).

A redistribution of HCs trapped on top J163 was done using the Trap Charge Assessment tool. TCA redistributes the total HC volume trapped in the interval (in reservoir facies with an HC Sat > 1%) on the top of J163 (Figure 42) using drainage areas. Thickness, porosity, temperature and pressure are extracted from results and applied in the interval. TCA result allows to have an idea of the amount and nature of HCs trapped (volume, mass, GOR, OWC, etc...).

Maps and table from TCA (Table 11, Figures 50 and 51) shows mostly oil in reservoirs, with important quantities accumulated in this play (mostly in the slope).

HC Sat Cutoff	Total Volume of Liquid (in place)		
>1 %	23 BBL		
>5 % ~P10	5.9 BBL		
>10 % ~P50	1.3 BBL		
>12 % ~P90	0.97 BBL		

Table 10: P10, P50, P90 and the total volume of HC accumulated in the Early-Middle Jurassic interval.

> Figure 49: Reservoir facies distribution in the Early-Middle Jurassic

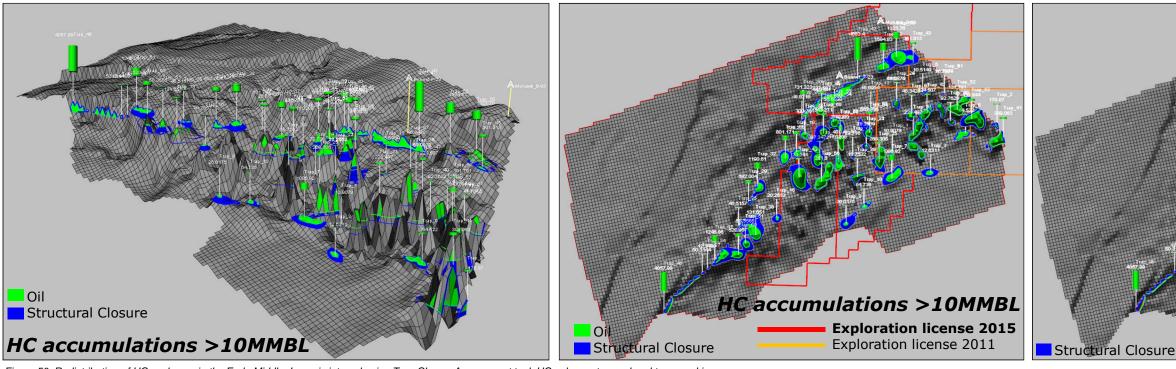
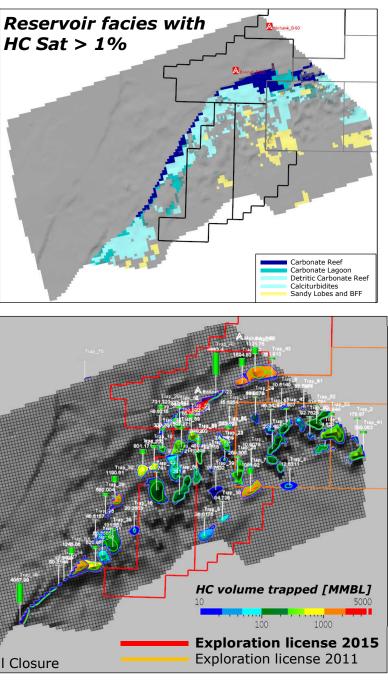



Figure 50: Redistribution of HCs volumes in the Early-Middle Jurassic interval using Trap Charge Assessment tool. HC volumes trapped and traps ranking.

Migration Simulation

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

Early-Middle-Jurassic interval (J163-J200)

	Total Liquid Mass [kg]	Total Liquid 1_OIL-Heavy Mass [kg]	Total Liquid 2_OIL- Normal Mass [kg]	Total Liquid 3_OIL- Condensa te Mass [kg]	Total Liquid 4_GAS- Thermogeni c Mass [kg]	Total Volume of Liquid (in place) [MMstb]	Total Volume of Liquid from Liquid (std) [MMstb]	Mean Temperat ure [°C]	Mean mass GOR of Liquid Phase [mg/g]	Mean vol, GOR of Liquid Phase [ft³/stb]	Mean mass GOR of Total HC [mg/g]	Mean API Gravity of Liquid from Liquid [°API]
Trap_1	1,33E+09	5,18E+08	5,96E+08	1,26E+08	9,42E+07	10,9078	8,7297	123,353	75,9433	515,1191	75,9433	26,86
Trap 2	1,67E+10	3,98E+09	6,75E+09	1,93E+09	3,98E+09	178,8696	90,8107	121,075	314,5411	2094,3866	314,5411	29,8185
Trap_3	1,58E+09	5,45E+08	7,66E+08	1,86E+08	8,60E+07	12,6311	10,6366	107,77	57,4097	385,8317	57,4097	28,3274
Trap_3	1,58E+09	5,45E+08	7,66E+08	1,86E+08		12,6311	10,6366	107,77	57,4097	385,8317	57,4097	28,3274
Trap_5	1,01E+09	1,83E+08	4,51E+08	1,94E+08	1,83E+08	10,5149	6,0579	116,772	220,6897	1439,9042	220,6897	33,1312
Trap_6	1,93E+10	6,30E+09	9,09E+09	2,27E+09	1,59E+09	164,5219	125,6637	107,894	90,1591	605,0919	90,1591	28,5487
Trap_7	1,28E+11	3,96E+10	6,13E+10	1,64E+10	1,06E+10	1086,9233	837,2345	105,541	90,3508	604,2244	90,3508	29,1192
Trap_8	2,79E+09	8,21E+08	1,28E+09	3,46E+08	3,46E+08	26,0175	17,4674	96,6397	141,5761	946,3198	141,5761	29,1999
Trap_9	1,95E+09	5,72E+08	9,10E+08	2,57E+08	2,13E+08	17,7954	12,4421	112,08	122,1795	815,4123	122,1795	29,4477
Trap_10	7,90E+09	2,59E+09	3,83E+09	9,72E+08	5,02E+08	64,736	52,6597	95,779	67,8814	455,0761	67,8814	28,7251
Trap_11	2,87E+09	6,13E+08	1,06E+09	3,10E+08	8,94E+08	36,7077	14,1985	110,602	451,893	3005,8763	451,893	29,9835
Trap_13	1,87E+09	5,86E+08	9,21E+08	2,53E+08	1,09E+08	15,6954	12,5753	112,851	62,104	414,8915	62,104	29,2862
Trap_14	2,59E+09	8,03E+08	1,24E+09	3,31E+08	2,20E+08	22,716	16,9127	112,131	92,9659	621,7935	92,9659	29,0984
Trap_16	1,60E+09	4,59E+08	5,59E+08	1,23E+08	4,59E+08	20,2653	8,0589	105,611	402,1268	2720,4809	402,1268	27,2746
Trap_17	7,95E+10	2,08E+10	3,76E+10	1,09E+10		801,1709	497,7682	106,518	147,9211	982,7085	147,9211	30,1848
Trap_19	5,31E+10	1,43E+10	2,51E+10	7,19E+09			334,3297	102,132	139,531	928,0279	139,531	30,0003
Trap_21	1,93E+09	5,36E+08	8,89E+08	2,51E+08	2,51E+08	18,2669	12,0072	123,965	149,5972	997,0931	149,5972	29,6579
Trap_22	1,86E+09	3,67E+08	8,51E+08	2,75E+08	3,67E+08	20,2363	10,8342	118,212	245,8547	1617,5529	245,8547	31,7615
Trap_23	1,11E+10	2,93E+09	4,78E+09	1,34E+09	2,06E+09	118,3793	64,7886	114,641	227,7878	1519,2524	227,7878	29,5513
Trap_24	5,99E+09	1,60E+09	2,35E+09	6,03E+08	1,43E+09	69,9874	32,4581	116,051	313,4274	2101,3815	313,4274	28,7123
Trap_25	2,93E+10	8,37E+09	1,38E+10	3,84E+09	3,28E+09	268,3063	185,9062	119,153	126,4661	843,3236	126,4661	29,5807
Trap_26	5,17E+09	1,01E+09	2,76E+09	9,21E+08	4,73E+08	48,8216	34,249	104,606	100,7599	659,6179	100,7599	32,5812
Trap_27	5,12E+09	1,47E+09	2,35E+09	6,54E+08		50,3144	32,0082	98,9097	144,4253	963,8896	144,4253	29,4458
Trap_29	6,05E+10	1,86E+10	2,81E+10	7,28E+09	6,56E+09	582,0043	384,636	98,0008	121,6282	814,4595	121,6282	28,9089
Trap_30	7,54E+10	1,64E+10	3,91E+10	1,27E+10	7,29E+09	731,3226	495,0155	101,207	107,0261	703,5081	107,0261	31,9121
Trap_31	1,95E+10	4,67E+09	7,99E+09	2,31E+09		228,4969	107,4446	112,305	302,0528	2010,1728	302,0528	29,9036
Trap_32	1,21E+11	3,08E+10	5,88E+10	1,76E+10	1,39E+10		771,8918	101,159	129,47	858,1324	129,47	30,561
Trap_34	1,27E+09	3,64E+08	5,86E+08	1,63E+08	,	12,3498	7,9614	97,4008	137,5996	918,2035	137,5996	29,4689
Trap_35	3,26E+09	9,26E+08	1,14E+09	2,60E+08		46,5157	16,461	88,8995	397,5377	2686,9073	397,5377	27,4239
Trap_36	1,67E+09	5,36E+08	7,91E+08	2,04E+08	· · · · · · · · · · · · · · · · · · ·		10,903	109,697	90,0618	603,6454	90,0618	<i></i>
Trap_37	3,18E+10	7,70E+09	1,51E+10	4,59E+09		330,7811	197,2023	104,31	161,5955	1069,7826	161,5955	30,7547
Trap_38	1,18E+10	3,50E+09	4,99E+09	1,23E+09		131,6514	69,1015	93,6026	216,3006	1452,5783	216,3006	
Trap_39	1,97E+09	5,89E+08	9,01E+08	2,41E+08	2,41E+08	18,7532	12,3504	99,1634	139,0676	930,3368	139,0676	29,0645
Trap_40	9,42E+09	2,69E+09	4,27E+09	1,20E+09	1,26E+09	92,7628	58,3111	106,313	154,9531	1034,2821	154,9531	29,4255
Trap_41	4,52E+10	1,47E+10	2,07E+10	5,03E+09	4,84E+09	399,0633	286,8104	112	119,8848	805,657	119,8848	
Trap_42	4,39E+11	1,21E+11	1,99E+11	5,51E+10	6,41E+10	4683,3992	2686,2115	103,587	170,8409	1139,3853	170,8409	29,559
Trap_43	3,07E+10	8,08E+09	1,34E+10	3,65E+09	5,61E+09	361,9132	179,6733	91,7568	223,673	1491,8752	223,673	29,544
Trap_44	1,25E+09	3,84E+08	4,99E+08	1,13E+08	2,54E+08	14,9151	7,0484	107,311	254,9289	1719,9889	254,9289	27,7051
Trap_45	2,85E+10	8,06E+09	1,22E+10	3,21E+09	5,09E+09	337,5829	167,1528	102,67	217,3329	1454,8919	217,3329	28,9569
Trap_46 Trap_47	3,40E+11 1,87E+10	8,75E+10 4,32E+09	1,36E+11 7,36E+09	3,68E+10 2,14E+09	7,94E+10 4,83E+09	4057,9908 224,5072	1862,5668 99,1571	101,606 113,915	304,6757 349,0871	2036,5427 2323,2487	<u>304,6757</u> 349,0871	29,1971 29,8993
Trap_47 Trap_48	7,87E+09	2,36E+09	3,32E+09	7,92E+08	<u> </u>	87,3472	45,9351	102,223	216,4533	1455,1763	216,4533	29,8993
Trap_48 Trap_49	1,28E+10	2,36E+09 4,33E+09	5,53E+09	1,22E+08	1,40E+09	131,7407	78,2775	91,3902	154,1731	1455,1763	154,1731	20,2762
Trap_49 Trap_50	8,17E+08	4,33E+09 2,18E+08	3,08E+08	7,31E+09	2.18E+09	11,0208	4,2543	87,6395	363,5555	2443,7954	363,5555	28,2973
Trap_50 Trap_51	5,17E+09	2,16E+06 1,45E+09	2.18E+09	5,67E+08	,		29,8723	95,5536	234,917	1573,1584	234,917	28,9005
Trap_51	7,75E+09	1,45E+09	2,18E+09 2,86E+09	7,76E+08			39,7396	95,2759	390,1613	2612,782	390,1613	28,9003
Trap_52	3,62E+10	9.36E+09	1,43E+10	3,78E+09	8,82E+09	430,9445	195,6131	100,117	390,1013	2152,8158	390,1013	
Trap_53	3,83E+09	1,02E+09	1,43E+10 1,26E+09	3,02E+09			18,233	105,325	486,0823	3283,0565	486,0823	
Trap_55	5,70E+10	1,31E+10	2,22E+10	6,39E+09			299.1626	101,548	366,3199	,	366,3199	
Trap_55	1,12E+11						647,6642		235,4999	1573,602		· · · · ·
Trap_50 Trap_57	1,12E+11						71,9556	,	203,8159		203,8159	
Trap_57	1,90E+09						9,7959	101,373	376,5509	2534,9483	376,5509	
Trap_60	4,43E+10		1,79E+10				246,3459		278,9294	1870,8246		
Trap_61	1,24E+11	3,58E+10					784,5962	86,356	132,268		132,268	
Trap_62	1,31E+11	3,57E+10	5,55E+10				757,8066		234,9658	1570,7495		29,1799
Trap_64	1,03E+10						66,7357	116,483	108,2154	,	108,2154	
Trap_65	4,40E+10		2,22E+10				294,0608	111,258	77,836	516,191	77,836	
Trap_66	2,50E+10	,				,	153,8504	84,5608	156,4036		156,4036	
Trap_67	3,71E+09						19,6762	107,753	353,4529	2352,3456		
Trap_69	2,47E+10						126,2079	98,5024	398,5799		398,5799	
	1,39E+09						9,2526		155,9376			
Trap_70					1.00LTU0	L 21.0/10	0,2020		100.00/0			<u> </u>

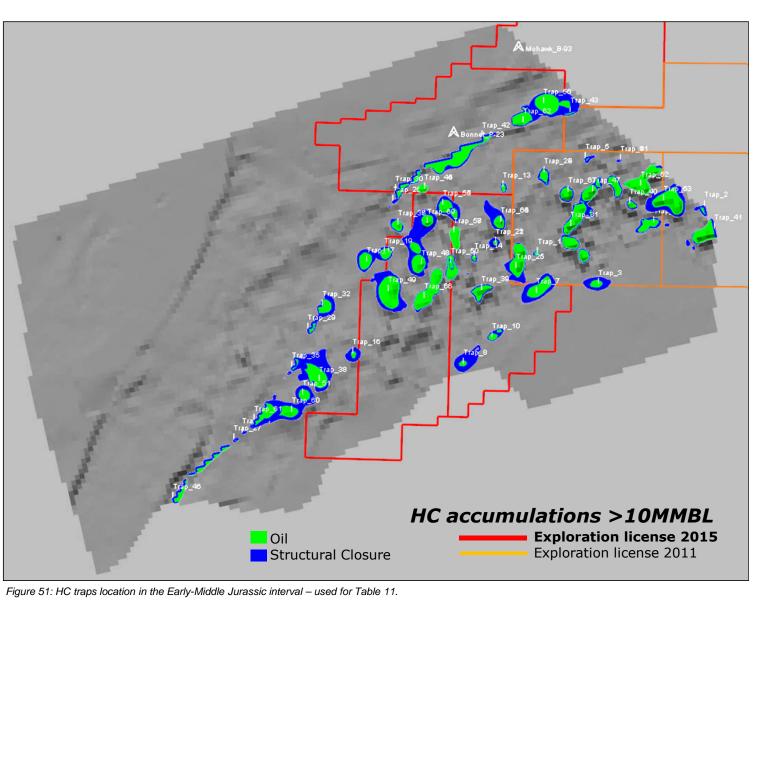


Table 11: Total HC liquid volume in the Early-Middle Jurassic interval per traps

PL. 7.3.5

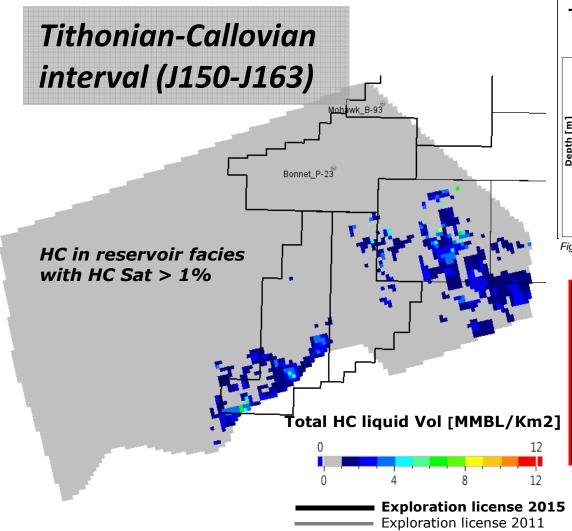


Figure 52: Total HC liquid volume in the Tithonian-Callovian interval.

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

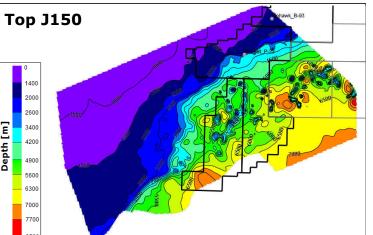


Figure 43: Depth map of J150 (top of Tithonian-Callovian interval).

Upper Jurassic Play: Location: basin

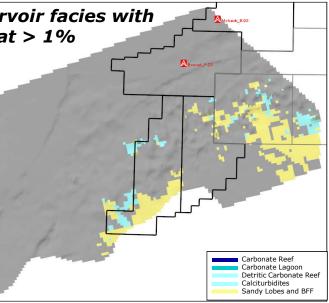
Reservoir: Calciturbidites, detritic carbonates and Sandy turbidites (Figure 53). HC Source: Lower Jurassic SR; Callovian SR Locally Trap Style: lateral pinch-out, stratigraphic traps, pinch-out againts salt diapir flanks; doming structures linked to salt deformation.

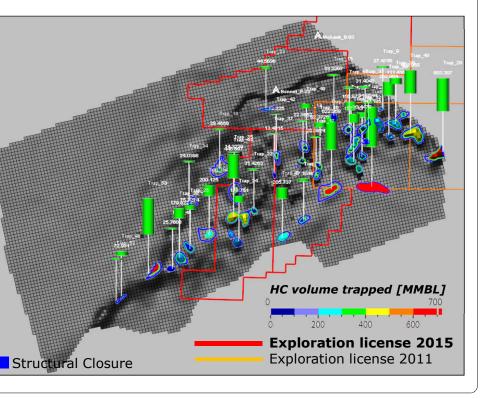
Upper Jurassic interval (Figure 43) shows accumulations (Up to 8,2 BBL) in the basin, mostly located on sandy lobes in the south/south-east of the basin (Table 12, Figures 52 and 53).

A redistribution of HCs trapped on top J150 was done using Trap Charge Assessment tool. TCA redistributes the total HC volume trapped in the interval (in reservoir facies with an HC Sat > 1%) on the top of J150 using drainage areas.

Thickness, porosity, temperature and pressure are extracted from results and applied in the interval. TCA result allows to have an idea of the amount and nature of HCs trapped (volume, mass, GOR, OWC, etc...).

Maps and table from TCA (Table 13, Figures 53 and 54) shows mostly oil in reservoirs. Drainage areas, mostly created by salt tectonism, tend to redistribute oil in the center of the basin


HC Sat Cutoff	Total Volume of Liquid (in place)
>1 %	8.2 BBL
>5 % ~P10	5.2 BBL
>10 % ~P50	4 BBL
>12 % ~P90	3.7 BBL


Figure 53: Reservoir facies distribution in the Tithonian-Callovian interval

Oil HC accumulations >10MMBL Structural Closure **Exploration license 2015** Oil HC accumulations >10MMBL Exploration license 2011 Structural Closure

Figure 54: Redistribution of HCs volumes in the Tithonian-Callovian interval using Trap Charge Assessment tool. HC volumes trapped and traps ranking.

Migration Simulation

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

Tithonian-Callovian interval (J150-J163)

	Total Liquid Mass [kg]	Total Liquid 1_OIL-Heavy Mass [kg]	Total Liquid 2_OIL-Normal Mass [kg]	Total Liquid 3_OIL- Condensate Mass [kg]	Total Liquid 4_GAS- Thermoge nic Mass [kg]		Total Volume of Liquid from Liquid (std) [MMstb]	Mean Temperatur e [°C]	Mean mass GOR of Liquid Phase [mg/g]	Mean vol, GOR of Liquid Phase [ft ³ /stb]	Mean mass GOR of Total HC [mg/g]	Mean API Gravity of Liquid from Liquid [°API]
Trap_4	1,05E+11	3,72E+10	5,40E+10	1,31E+10	1,43E+08	743,1851	742,0188	101,016	1,3738	9,222	1,3738	28,5146
Trap_6	8,70E+10	3,07E+10	4,50E+10	1,09E+10	3,41E+08	622,2591	616,1233	99,3843	3,9349	26,4097	3,9349	28,5419
Trap_7	2,91E+10	1,04E+10	1,50E+10	3,69E+09	0	205,7366	206,8031	91,4414	0	0	0	28,4914
Trap_8	6,66E+09	2,33E+09	3,46E+09	8,79E+08	0	47,1018	47,4541	90,3199	0	0	0	28,7647
Trap_9	3,84E+09	1,35E+09	1,99E+09	5,06E+08	0	27,4748	27,3722	104,134	0	0	0	28,7246
Trap_11	4,50E+09	1,45E+09	2,31E+09	6,06E+08	1,35E+08			109,859	30,9039	206,5468	30,9039	29,2158
Trap_12	1,17E+10	3,86E+09	6,01E+09	1,55E+09	2,56E+08			114,704	22,4233	150,0167	22,4233	29,0547
Trap_13	3,10E+09	1,02E+09	1,66E+09	4,25E+08	0	22,3862	22,1773	111,1	0	0	0	29,2954
Trap_14	2,72E+10	8,88E+09	1,42E+10	3,95E+09	2,36E+08	200,1248	193,0579	97,4126	8,7361	58,3139	8,7361	29,4194
Trap_15	4,54E+09	1,50E+09	2,41E+09	6,04E+08	3,44E+07	33,3307	32,1762	107,522	7,63	51,0177	7,63	29,1443
Trap_16	1,11E+10	3,55E+09	5,87E+09	1,50E+09	1,52E+08	82,3726	78,056	115,664	13,9344	93,0645	13,9344	29,3303
Trap_17	3,47E+09	1,18E+09	1,78E+09	4,50E+08	6,23E+07	26,0824	24,2663	107,666	18,3015	122,6041	18,3015	28,8413
Trap_18	3,97E+09	1,39E+09	2,14E+09	4,35E+08	0	28,4559	28,1948	99,3304		0	0	28,3576
Trap_20	2,07E+10	7,05E+09	1,05E+10	2,56E+09	5,49E+08		,	107,466	27,2685	182,8812	27,2685	28,6609
Trap_21	2,04E+10	6,66E+09	1,06E+10	2,75E+09	4,74E+08	,		103,849	23,7645	158,8706	23,7645	29,1755
Trap_22	4,42E+09	1,57E+09	2,31E+09	5,47E+08	0	31,4263	31,4371	91,8433	0	0	0	28,5179
Trap_24	1,66E+10	5,40E+09	8,72E+09	2,43E+09	5,68E+06	118,751	118,4279	100,965	0,3429	2,2884	0,3429	29,478
Trap_25	1,01E+10	3,33E+09	5,21E+09	1,39E+09	1,54E+08			91,2161	15,4604	103,357	15,4604	29,1735
Trap_28	3,45E+10	1,19E+10	1,78E+10	4,52E+09	2,88E+08	252,8636	244,0152	100,363	8,4057	56,3333	8,4057	28,7771
Trap_29	8,48E+10	3,03E+10	4,39E+10	1,05E+10	7,87E+07	603,3073	602,4012	103,161	0,9285	6,2347	0,9285	28,4682
Trap_31	3,91E+09	1,34E+09	1,92E+09	4,85E+08	,			104,652		299,6214	44,6504	28,5725
Trap_33	5,83E+09	2,11E+09	2,93E+09	6,86E+08	1,08E+08	44,5636		94,5364	18,8449	126,7783	18,8449	28,1656
Trap_34	3,36E+09	1,16E+09	1,85E+09	3,53E+08	0	24,0398	23,8724	95,6508	0	0	0	28,3975
Trap_35	2,00E+09	6,91E+08	1,08E+09	2,25E+08	0	14,3239		101,743	0	0	0	28,5011
Trap_37	1,89E+09	6,70E+08	1,02E+09	2,01E+08	0	13,4815		84,0298		0	0	28,2231
Trap_38	2,47E+10	7,56E+09	1,31E+10	3,87E+09	,	· · · · · · · · · · · · · · · · · · ·	ć	94,3841	4,3239	28,7516	<i>,</i>	30,0383
Trap_39	1,53E+10	5,31E+09	7,89E+09	2,00E+09		,	ć	92,1023	,	43,5621	6,4994	28,762
Trap_40	5,91E+10	2,18E+10	3,02E+10	6,94E+09	2,30E+08		417,7113	98,2013	, í	26,2836	3,9051	28,0916
Trap_42	1,71E+09	6,16E+08	9,21E+08	1,73E+08	0	12,225		96,182		0	0	20,0010
Trap_44	6,23E+10	2,05E+10	3,27E+10	9,03E+09	,			89,4106	<i>,</i>	2,1686	- /	- ,
Trap_45	3,44E+09	1,11E+09	1,79E+09	4,92E+08	,	25,7608		102,553		106,2168	1	,
Trap_46	9,93E+09	3,73E+09	5,02E+09	1,06E+09			69,4521	101,042	,	79,8369	11,8352	27,7345
Trap_49	1,07E+10	3,42E+09	5,65E+09	1,51E+09	9,90E+07	79,312	,	106,299	9,3554	62,4308	9,3554	29,4641
Trap_51	4,48E+09	1,55E+09	2,36E+09	5,73E+08	0	32,134	,	99,3388		0	0	
Trap_52	3,18E+09	1,22E+09	1,61E+09	3,47E+08	0	22,5478	,	94,6234		0	0	,
Trap_53	8,82E+10	2,84E+10	4,59E+10	1,26E+10	,		,	78,107	15,7886	105,374	15,7886	29,4436
TOTAL	8,01E+11	2,77E+11	4,21E+11	9,72E+10	5,03E+09	5822,3721	5669,516					

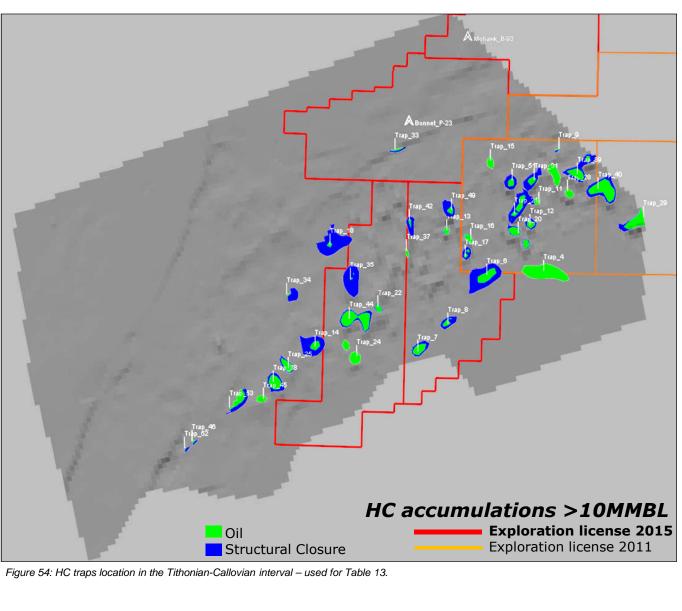
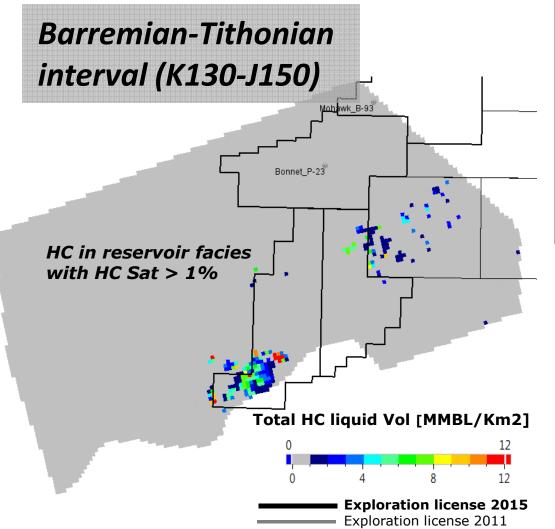



Table 13: Total HC liquid volume in the Tithonian-Callovian interval per traps

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

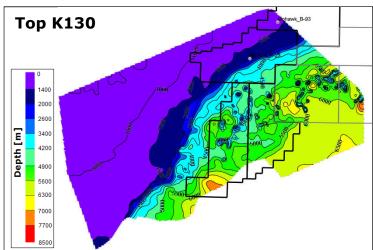


Figure 43: Depth map of K130 (top of Barremian-Tithonian interval).

Location: basin Reservoir: Calciturbidites, detritic carbonates and Sandy turbidites (Figure 57). HC Source: Lower Jurassic SR; Callovan and Tithonian SR locally Trap Style: lateral pinch-out against salt diapir flanks; stratigraphic traps, Top of salt diapirs.

Upper Jurassic/lower Cretaceous interval (Figure 43) shows less important accumulations (up to 5BBL) in the basin, mostly located on top salt diapirs (Table 14, Figures 56 and 57).

A redistribution of HCs trapped on top K130 was done using Trap Charge Assessment tool. TCA redistributes the total HC volume trapped in the interval (in reservoir facies with an HC Sat > 1%) on the top of K130 using drainage areas.

Thickness, porosity, temperature and pressure are extracted from results and applied in the interval. TCA result allows to have an idea of the amount and nature of HCs trapped (volume, mass, GOR, OWC, etc...).

Maps and table from TCA shows (Table 15, Figures 58 and 59) mostly oil in reservoirs. Drainage areas ,mostly created by salt tectonism, tend to redistribute oil accumulated in the south to the center of the basin.

HC Sat Cutoff	Total Volume of Liquid (in place)
>1 %	5 BBL
>5 % ~P10	1.4 BBL
>10 % ~P50	0.9 BBL
>12 % ~P90	0.7 BBL

Table 14: P10, P50, P90 and the total volume of HC accumulated in the Barremian-Tithonian interval

Figure 57: Reservoir facies distribution in the Barremian-Tithonian interval

Upper Jurassic / Lower cretaceous Play:

Figure 56: Total HC liquid volume in the Barremian-Tithonian interval.

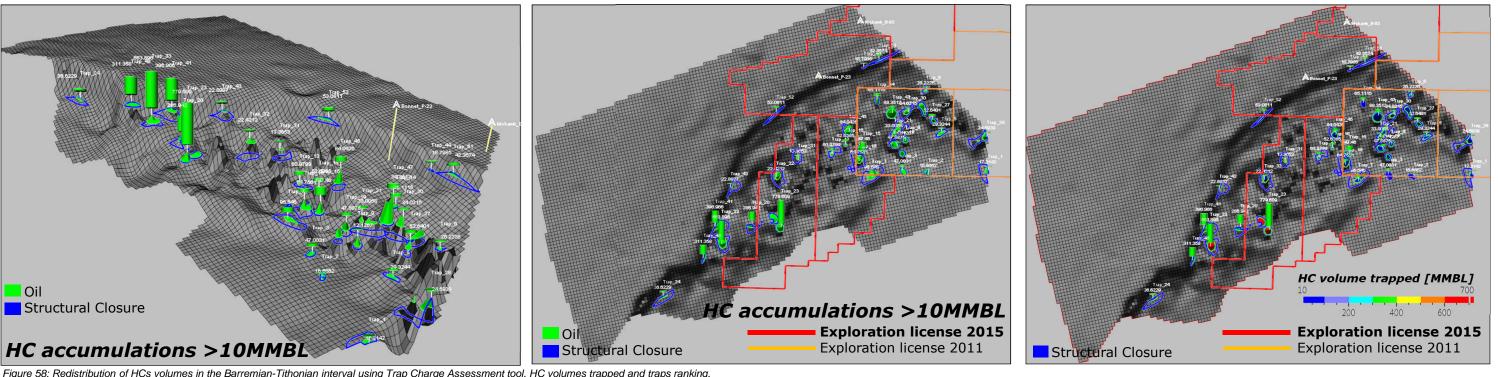
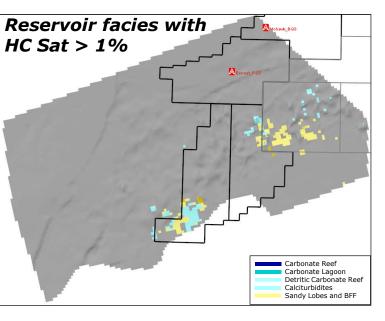



Figure 58: Redistribution of HCs volumes in the Barremian-Tithonian interval using Trap Charge Assessment tool. HC volumes trapped and traps ranking.

Migration Simulation

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

Barremian-Tithonian interval (K130-J150)

	Total Liquid Mass [kg]	Total Liquid 1_OIL-Heavy Mass [kg]	Total Liquid 2_OIL-Normal Mass [kg]	Total Liquid 3_OIL- Condensate Mass [kg]	Total Liquid 4_GAS- Thermogenic Mass [kg]	Total Volume of Liquid (in place) [MMstb]		Mean Temperature [°C]	Mean mass GOR of Liquid Phase [mg/g]	Mean vol, GOR of Liquid Phase [ft³/stb]	Mean mass GOR of Total HC [mg/g]	Mean API Gravity of Liquid from Liquid [°API]
Trap_1	2,18E+09	8,30E+08	1,09E+09	1,44E+08	1,10E+08	17,3142	14,5413	91,9974	53,1013	360,703	53,1013	26,6318
Trap_2	2,09E+09	8,01E+08	1,05E+09	1,37E+08	1,06E+08	16,6662	13,9641	93,3432	53,0916	360,7459	53,0916	26,5841
Trap_3	5,88E+09	2,18E+09	2,93E+09	4,67E+08	3,03E+08	47,0031	39,3167	87,8525	54,3204	367,9582	54,3204	27,0726
Trap_5	3,64E+09	1,36E+09	1,80E+09	2,87E+08	1,87E+08	29,3244	24,3251	96,2984	54,1584	367,0045	54,1584	27,0104
Trap_6	3,30E+09	1,14E+09	1,65E+09	3,73E+08	1,31E+08	26,2226	22,5153	97,9699	41,232	277,1952	41,232	28,2765
Trap_7	1,17E+10	3,81E+09	6,04E+09	1,24E+09	6,09E+08	95,546	78,8675	90,4216	54,8838	368,4036	54,8838	28,5236
Trap_9	1,49E+09	4,76E+08	7,82E+08	1,53E+08	7,59E+07	12,1267	10,0421	103,421	53,7727	360,7624	53,7727	28,6048
Trap_13	8,31E+09	2,88E+09	4,30E+09	1,06E+09	6,94E+07	60,9799	58,7079	89,4394	8,4215	56,462	8,4215	28,7118
Trap_14	8,07E+09	2,70E+09	4,16E+09	8,73E+08	3,47E+08	65,1115	54,9381	98,2124	44,8976	301,5337	44,8976	28,4376
Trap_15	1,86E+10	5,96E+09	9,65E+09	2,34E+09	6,96E+08	147,4596	128,0945	102,536	38,7754	259,3775	38,7754	29,0786
Trap_16	7,07E+09	2,30E+09	3,73E+09	9,70E+08	7,93E+07	52,6365	49,9876	97,6584	11,3331	75,7027	11,3331	29,3055
Trap_18	8,11E+09	2,81E+09	4,03E+09	9,55E+08	3,21E+08	64,7561	55,3568	95,7996	41,1629	276,5597	41,1629	28,375
Trap_19	5,88E+09	1,98E+09	3,02E+09	5,71E+08	3,04E+08	47,8875	39,5768	98,454	54,4072	366,1212	54,4072	28,1229
Trap_20	3,76E+10	1,27E+10	1,92E+10	4,83E+09	8,39E+08	286,9424	261,7684	87,7982	22,8419	153,0311	22,8419	28,8305
Trap_21	4,16E+09	1,46E+09	2,08E+09	4,79E+08	1,46E+08	33,0058	28,5166	97,0966	36,3522	244,4169	36,3522	28,258
Trap_23	1,03E+11	3,35E+10	5,34E+10	1,41E+10	1,87E+09	779,6094	721,5842	92,334	18,5237	123,772	18,5237	29,2564
Trap_24	4,44E+09	1,67E+09	2,24E+09	3,09E+08	2,24E+08	36,6229	29,6862	84,5552	53,1466	360,5793	53,1466	26,8208
Trap_27	6,90E+09	2,45E+09	3,51E+09	7,81E+08	1,62E+08	52,6401	47,8351	94,2567	23,9928	161,3845	23,9928	28,1917
Trap_28	3,06E+09	1,04E+09	1,58E+09	2,89E+08	1,51E+08	24,5939	20,6269	94,995	51,816	348,8987	51,816	28,0249
Trap_30	4,33E+09	1,45E+09	2,18E+09	5,68E+08	1,37E+08	34,0215	29,8964	97,3845	32,622	218,454	32,622	28,9034
Trap_31	1,58E+09	5,08E+08	8,31E+08	1,63E+08	8,07E+07	13,3653	10,6829	90,1737	53,7592	360,726	53,7592	28,5806
Trap_32	2,69E+09	8,96E+08	1,40E+09	2,58E+08	1,37E+08	22,4212	18,1513	95,1371	53,6767	361,0202	53,6767	28,2049
Trap_33	8,82E+10	2,77E+10	4,65E+10	1,26E+10	1,41E+09	663,8958	621,8798	88,9497	16,2265	108,1829	16,2265	29,6126
Trap_41	5,38E+10	1,75E+10	2,84E+10	7,50E+09	4,40E+08	396,9657	381,829	79,9684	8,2425	55,0439	8,2425	29,3479
Trap_43	2,69E+09	9,20E+08	1,39E+09	2,41E+08	1,37E+08	22,8987	18,1044	80,4574	53,4695	360,3203	53,4695	27,8973
Trap_44	2,23E+09	7,46E+08	1,15E+09	2,42E+08	9,60E+07	18,7985	15,1954	82,7745	44,8976	301,5337	44,8976	28,4376
Trap_45	1,02E+10	3,18E+09	5,22E+09	1,28E+09	4,71E+08	84,0426	69,1144	96,8922	48,7152	325,6653	48,7152	29,1779
Trap_47	1,15E+10	3,88E+09	5,85E+09	1,47E+09	3,04E+08	89,3512	79,7975	93,2824	27,1412	181,8653	27,1412	28,8033
Trap_48	4,11E+10	1,45E+10	2,10E+10	4,82E+09	8,11E+08	311,3576	286,346	83,7149	20,1183	135,1892	20,1183	28,3499
Trap_51	5,03E+09	1,72E+09	2,56E+09	4,99E+08	2,49E+08	42,3574	33,9237	82,3769	52,0729	350,505	52,0729	28,0809
Trap_52	6,26E+09	2,19E+09	3,17E+09	6,46E+08	2,47E+08	53,0811	42,6284	77,5086	41,0987	276,7278	41,0987	28,0286
TOTAL	4,85E+11	1,69E+11	2,48E+11	4,88E+10	2,02E+10	3733,5134	3376,7077					

Oil Structural Closure

Table 15: Total HC liquid volume in the Barremian-Tithonian interval per traps

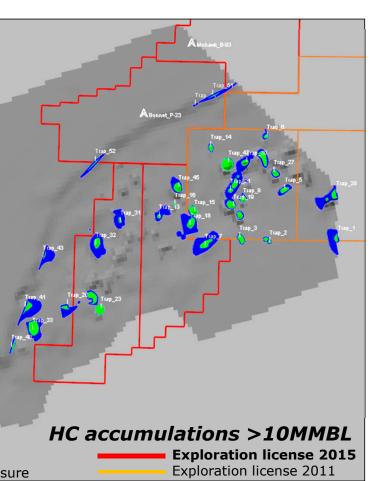


Figure 59: HC traps location in the Barremian-Tithonian interval – used for Table 15.

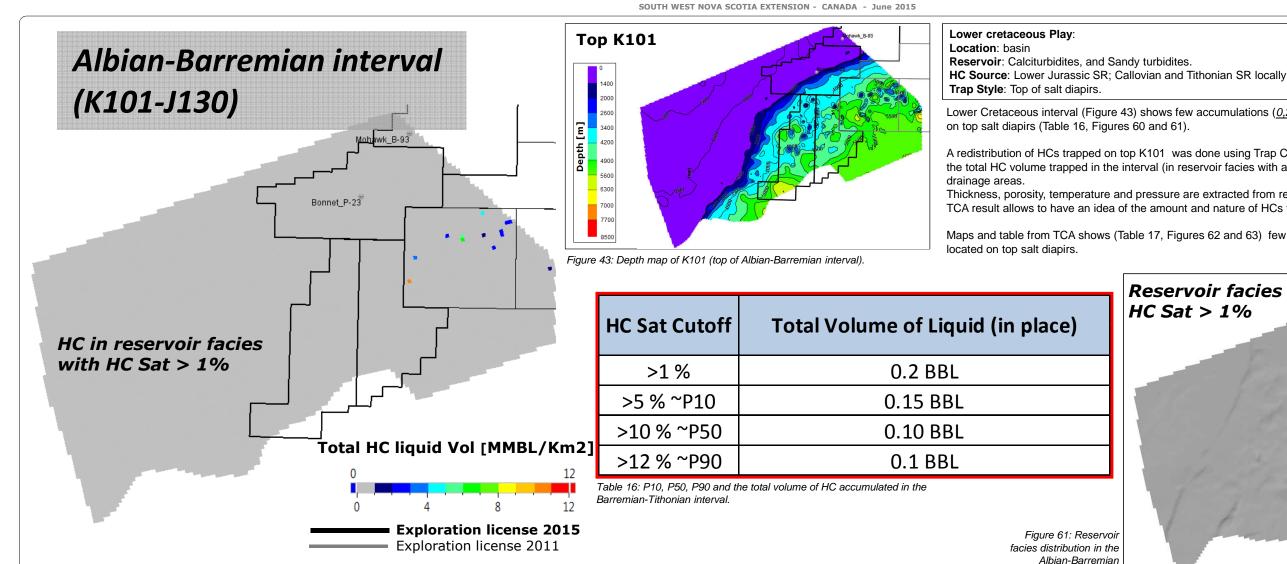


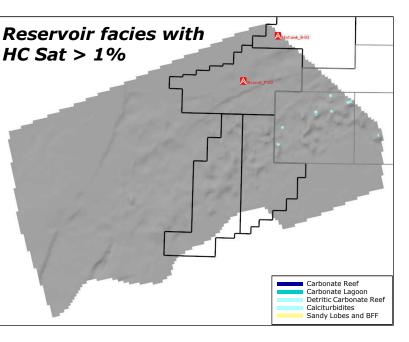
Figure 60: Total HC liquid volume in the Albian-Barremian interval.

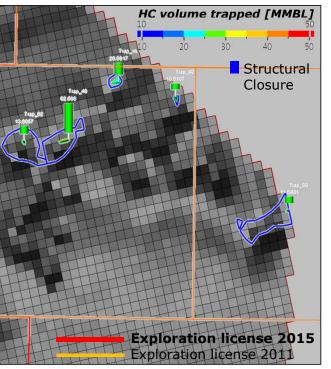
Oil Structural Closure HC accumulations >10MMBL **Exploration license 2015** Oil HC accumulations >10MMBL Exploration license 2011 Structural Closure

Figure 62: Redistribution of HCs volumes in the Albian-Barremian interval using Trap Charge Assessment tool. HC volumes trapped and traps ranking.

PL. 7.3.10

Migration Simulation

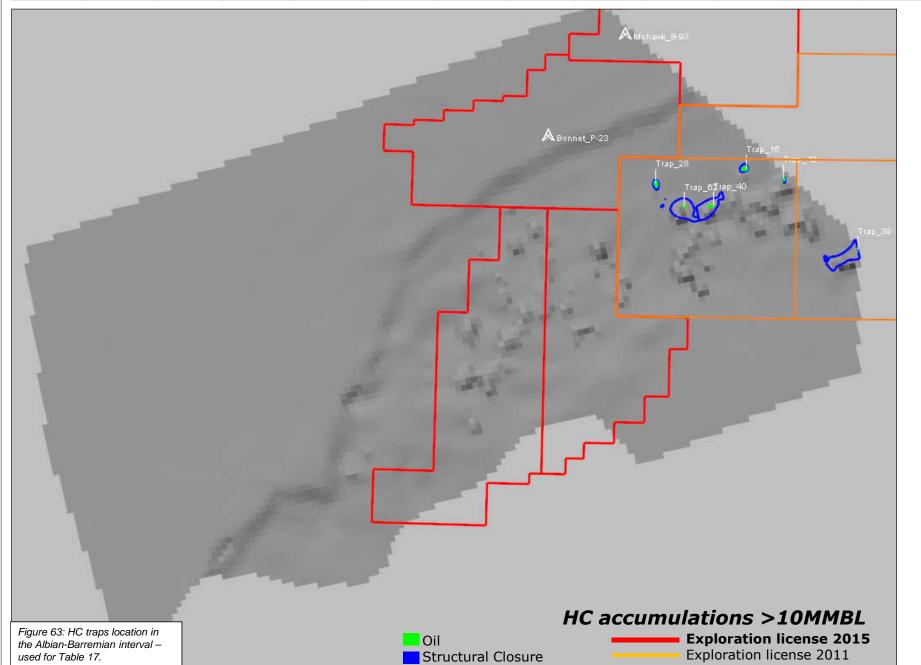

interval


Lower Cretaceous interval (Figure 43) shows few accumulations (0,2BBL) in the east of the basin, mostly located

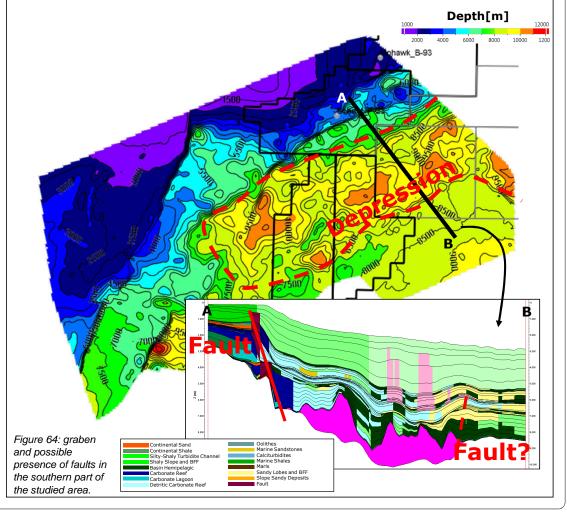
A redistribution of HCs trapped on top K101 was done using Trap Charge Assessment tool. TCA redistributes the total HC volume trapped in the interval (in reservoir facies with an HC Sat > 1%) on the top of K101 using

Thickness, porosity, temperature and pressure are extracted from results and applied in the interval. TCA result allows to have an idea of the amount and nature of HCs trapped (volume, mass, GOR, OWC, etc...).

Maps and table from TCA shows (Table 17, Figures 62 and 63) few accumulations, mostly oil in reservoirs



SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015


Albian-Barremian interval (K101-J130)

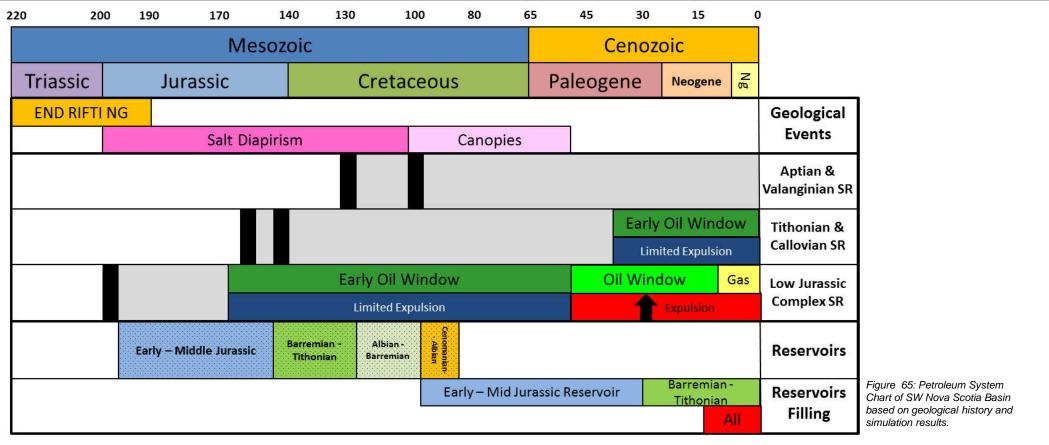
	Total Liquid Mass [kg]	Total Liquid 1_OIL-Heavy Mass [kg]	Total Liquid 2_OIL-Normal Mass [kg]	I 3 OIL-	4_GAS-	of Liquid (in	Total Volume of Vapor (in place) [MMstb]	Total Volume of Liquid from Liquid (std) [MMstb]	Mean Temperature	Mean mass GOR of Liquid Phase [mg/g]	Mean vol, GOR of Liquid Phase [ft³/stb]	Mean mass GOR of Total HC [mg/g]	Mean API Gravity of Liquid from Liquid [°API]	Table 11 volume Barremi
Trap_16	2,49E+09	8,68E+08	1,20E+09	2,89E+08	1,36E+08	20,8917	0	16,7032	83,7684	57,6469	387,7299	57,6469	28,2021	
Trap_28	2,19E+09	7,54E+08	1,06E+09	2,58E+08	1,22E+08	18,6493	0	14,7227	86,0815	58,8711	395,6345	58,8711	28,335	,
Trap_39	1,41E+09	4,64E+08	6,98E+08	1,67E+08	7,66E+07	11,6431	0	9,4606	80,7166	57,6489	386,6322	57,6489	28,6609	,
Trap_40	6,15E+09	2,04E+09	2,99E+09	7,86E+08	3,45E+08	52,508	0	41,3849	84,438	59,4655	398,4991	59,4655	28,7881	
Trap_42	1,23E+09	4,06E+08	5,98E+08	1,57E+08	6,93E+07	10,5107	0	8,2782	76,639	59,6899	399,9583	59,6899	28,806	
Trap_62	1,59E+09	5,66E+08	7,58E+08	1,83E+08	8,71E+07	13,6057	0	10,6843	80,4742	57,825	389,3068	57,825	28,0467	
TOTAL	1,60E+10	5,18E+09	7,71E+09	1,95E+09	1,21E+09	136,35	1,65E-05	107,6085]

17: Total HC liquid ne in the Albianmian interval per traps

Migration discussion

Migration Simulation

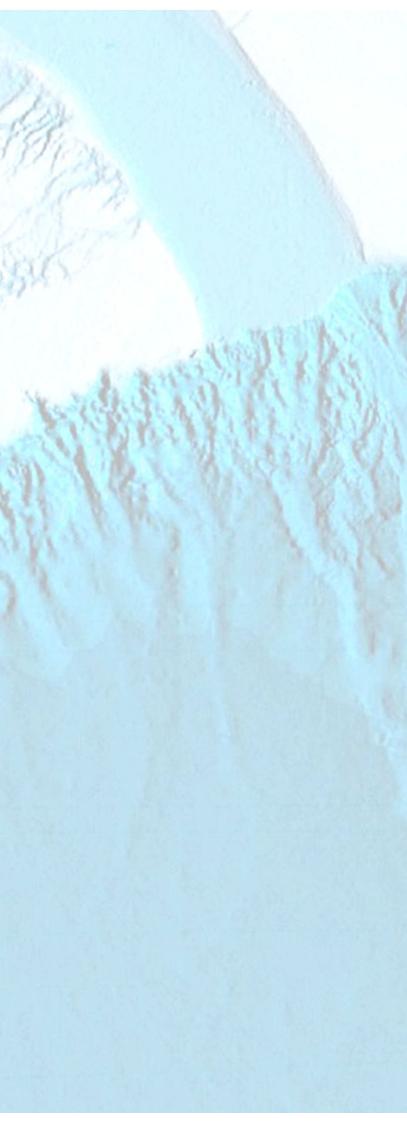
HC quantities that reach the Albian-Barremian interval is clearly limited. Th HC pathway is influenced only by geometry, facies distribution and seal quality. Other scenarios can be explored.


PL. 7.3.11

For example the presence of faults (Figure 64) near the depression (graben) in the south area can be possible. Its influence on vertical migration can lead to higher quantities of HCs in the upper intervals.

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

- Aptian and Valanginian SR are inmature.
- Tithonian and Callovian SR started their maturation and expulsion near 40Ma but their contribution to the system is limited.
- Low Jurassic Complex SR has an important contribution to the system. It started to be mature near 160Ma and contribute to lower reservoirs.
- Filling of Early Middle Jurassic reservoirs started near 100 Ma. The Filling of other reservoirs started at the maximum expulsion at 30Ma.



Conclusions on the Petroleum System Modeling

- Thermal calibration globally fits wells data and PFA 2011 results. However, the strong maturity at the bottom of Bonnet is still a major issue that does not seems to corresponds to the postrift thermal relaxation. A probable explanation for this high maturity vitrinite values in Bonnet comes from recent publication on the effect of the HotSpot transit across the Nova Scotia shelf (Bowman en al., 2012). For this reason a second scenario for maturity was generated including a thermal event during the Albian intended to evaluate their impact on the source rock maturity.
- The SW Nova Scotia Basin exhibit suitable conditions for hydrocarbon generation and preservation. The hydrocarbon generation seems more probable for the Lower Jurassic interval (Plienbachian to Toarcian). Younger stratigraphic levels could have generation conditions locally in mini-basins synclinals.
- The hydrocarbon generation in the model comes mainly from a Lower Jurassic type II source rock. The presence of this source rock in the area needs to be confirmed.
- Generated hydrocarbons correspond to Oil with a API gravity ranging from 25 to 40 degrees.
- The most prospective area for the lower Jurassic interval extends East to West close to the base of the slope. Reservoirs correspond to carbonatic deposits and sandy turbidites basinward.
- The Upper Jurassic, Upper Jurassic / Lower Cretaceous and Lower Cretaceous plays correspond to stratigraphic traps, pinch-out against salt diapirs flanks and doming deformation at the top of salt diapirs. Reservoirs for these plays mainly correspond to calciturbidites and turbidites.
- Main Risks: The presence and quality of a lower Jurassic source rock is a major risk in the area, as well as the quality of reservoirs.

CHAPTER 7.4

BASIN MODELING – HOT SPOT SCENARIO

SOUTH WEST NOVA SCOTIA EXTENSION - CANADA - June 2015

Early Cretaceous volcanism is widespread in the Scotian Basin. The volcanic rocks within wells, along the Scotian margins have been correlated to basalts flows outcrops (e.g. Scatarie Ridge) and dated from Hauterivian to Albian (Figure 66). These widespread volcanic activity indicates a regional and long-lived magma source, which implies a high regional heat flow. Thus the different seamounts observable on the oceanic crust result from this volcanic activity (e.g. Fogo Seamount, New England Seamount). Sleep (1990), Bowman et al. (2012) and Pe-Piper (2015) correlate them to a long-lived mantle plume system.

In the Georges Banks area, Sleep (1990) correlate the New England Seamount with the Withe Mountains range (igneous province). Thus, the hotspot seems to be active from the Jurassic (150Ma) with the White Mountains range to the late Early Cretaceous with the New England Seamounts (Figures 1 and 2).

This hotspot has some consequences on the stratigraphy records and on the petroleum system (e.g. Sable Basin, Bowman et al., 2012). The boyancy flux of this plume imply a regional uplift wich could be correlated to the Eraly Cretaceous Uncoformity (K137) and the Missisauga Sandstone. The potential uplift linked to this plume activity could be estimated from 500m to 1300m over 600km and seems to be a main local sedimentary input.

Moreover the high value of the heat flow could have an impact on the vitrinite reflectance and hence on the hydrocarbon maturation (E.G. sedimentary rocks of the Sable sub-basin, Bowman et al., 2012). The Figure 68 shows a simulated well and the impact of Heat Flow on vitrinite.

From Campbell (2005) it's possible to define a maximum plume diameter around 2000km with an extension of maximum heatflow between 500 to 700 km which cover all the study area (Figure 67).

From Sleep (1990), this hotspot could be comparable to La Reunion hotspot and 20-30% of current Hawaï hotspot.

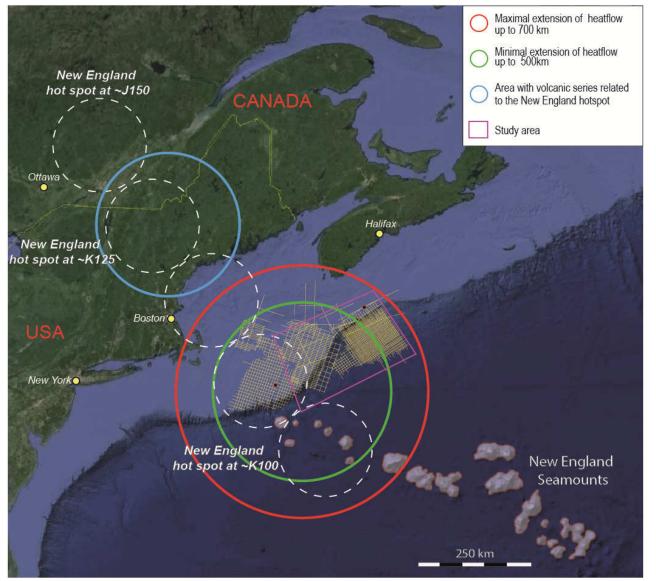
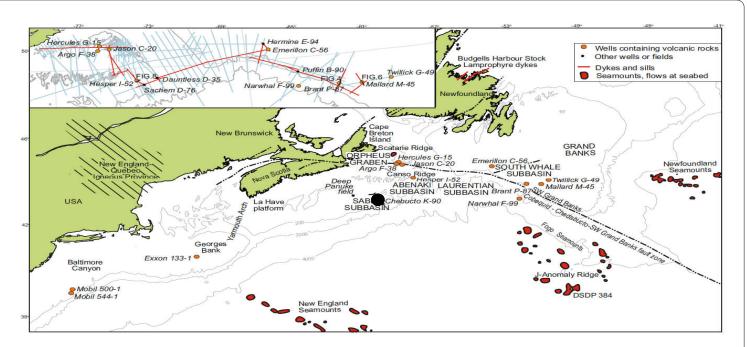
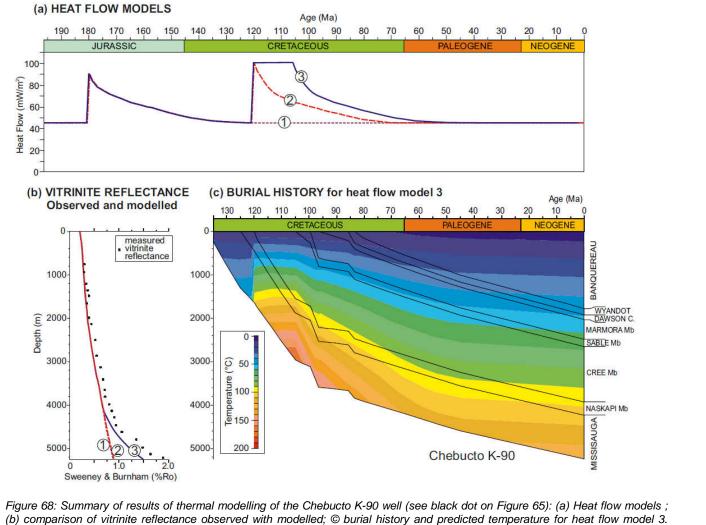
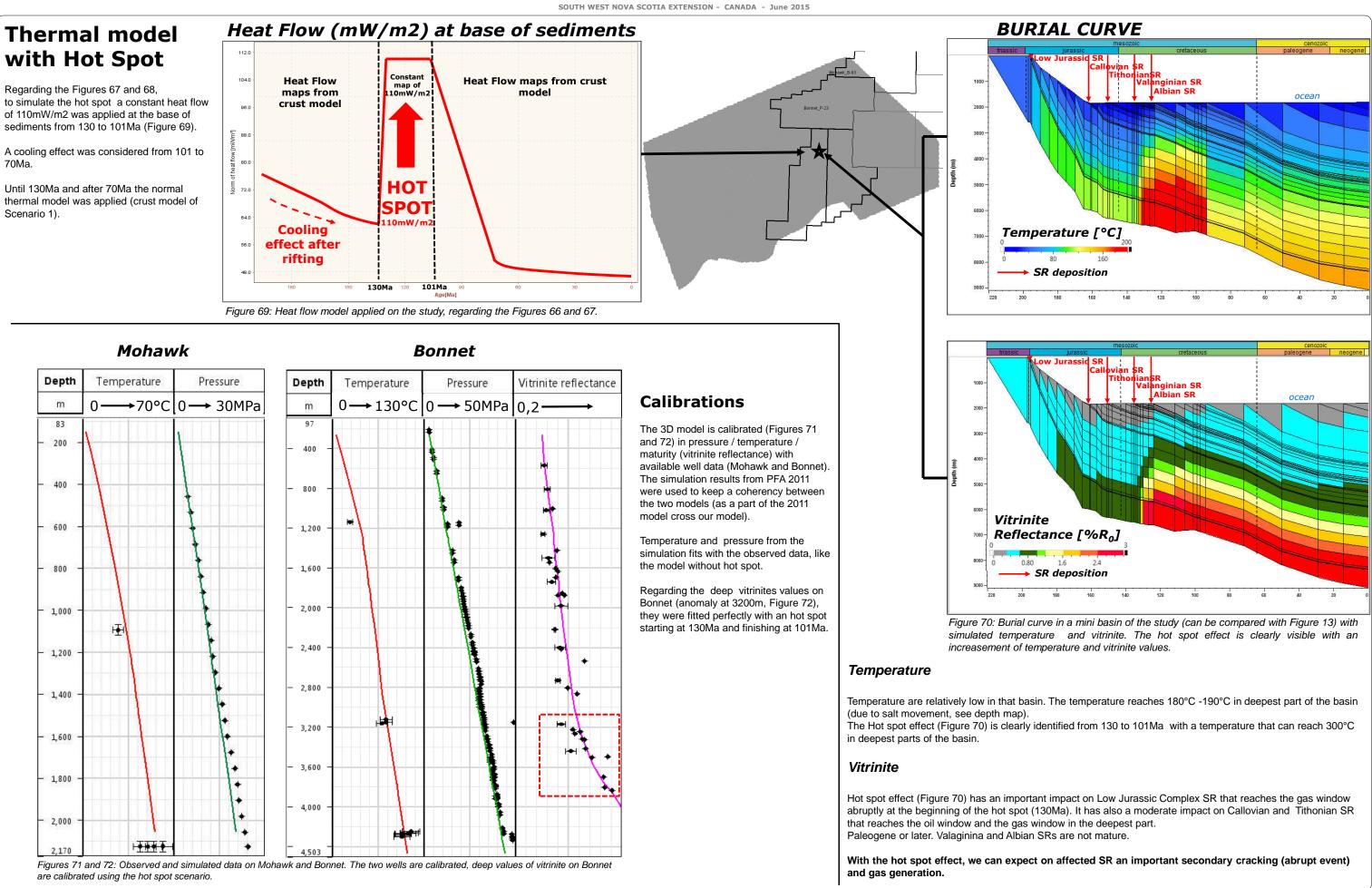
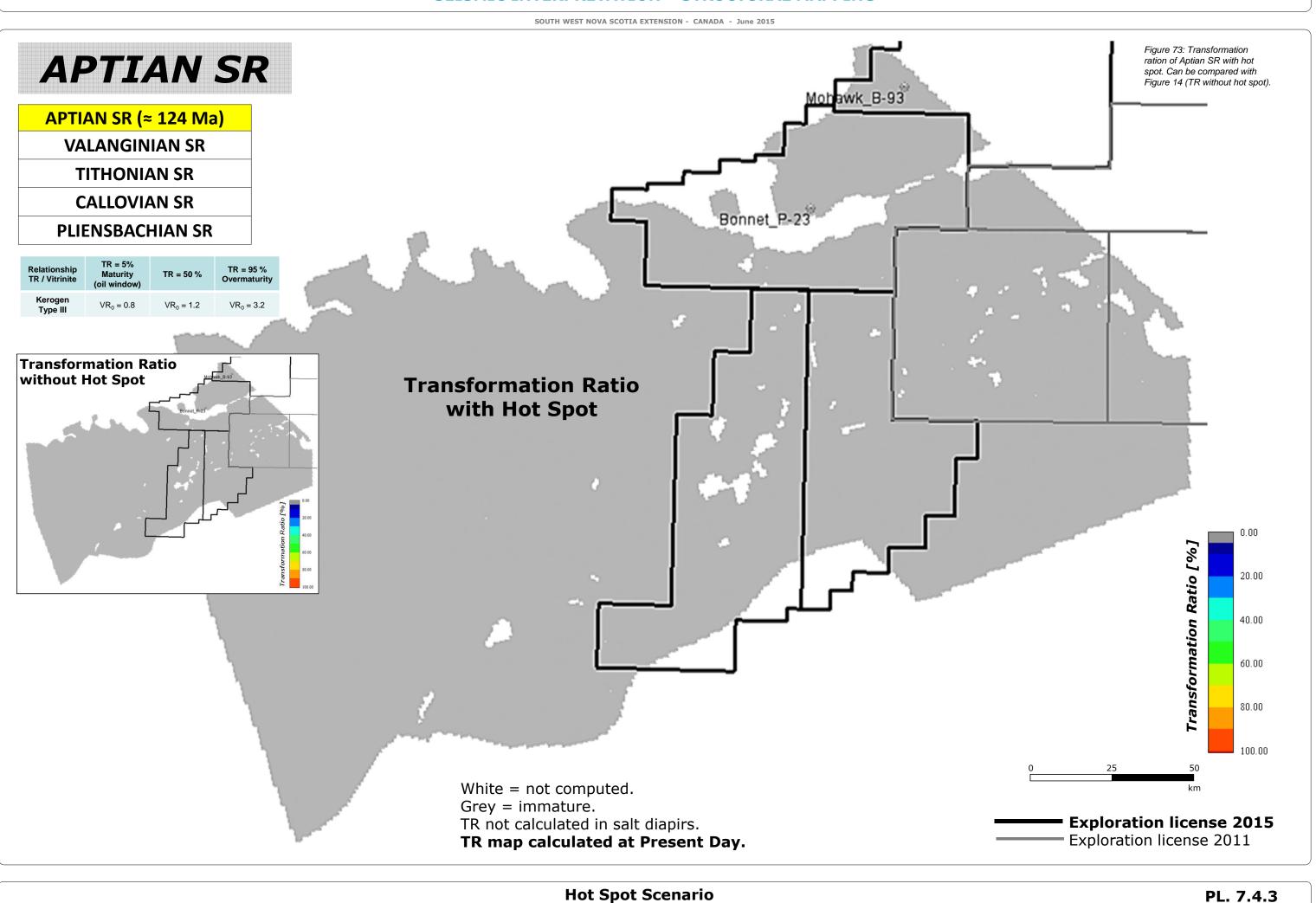
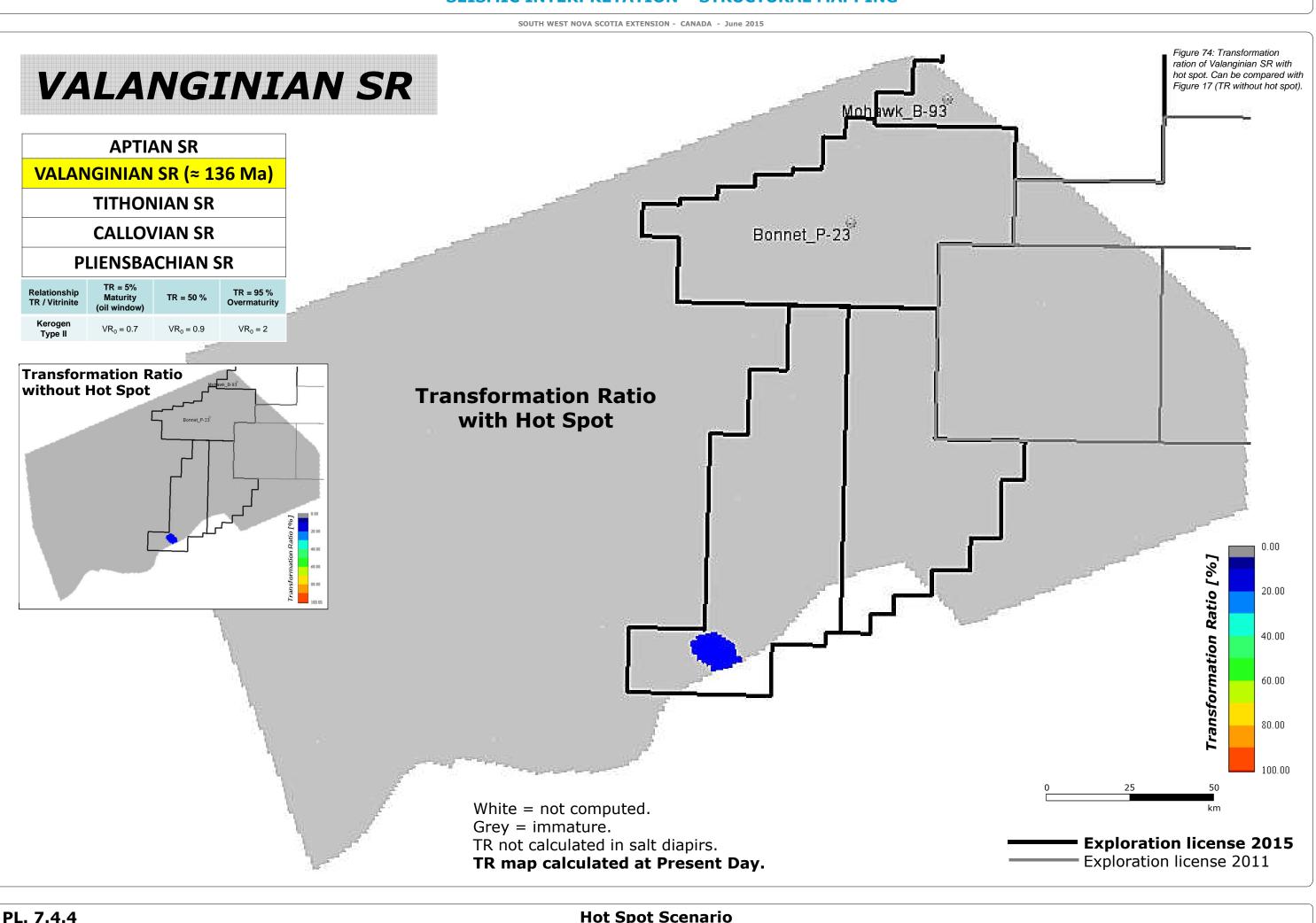




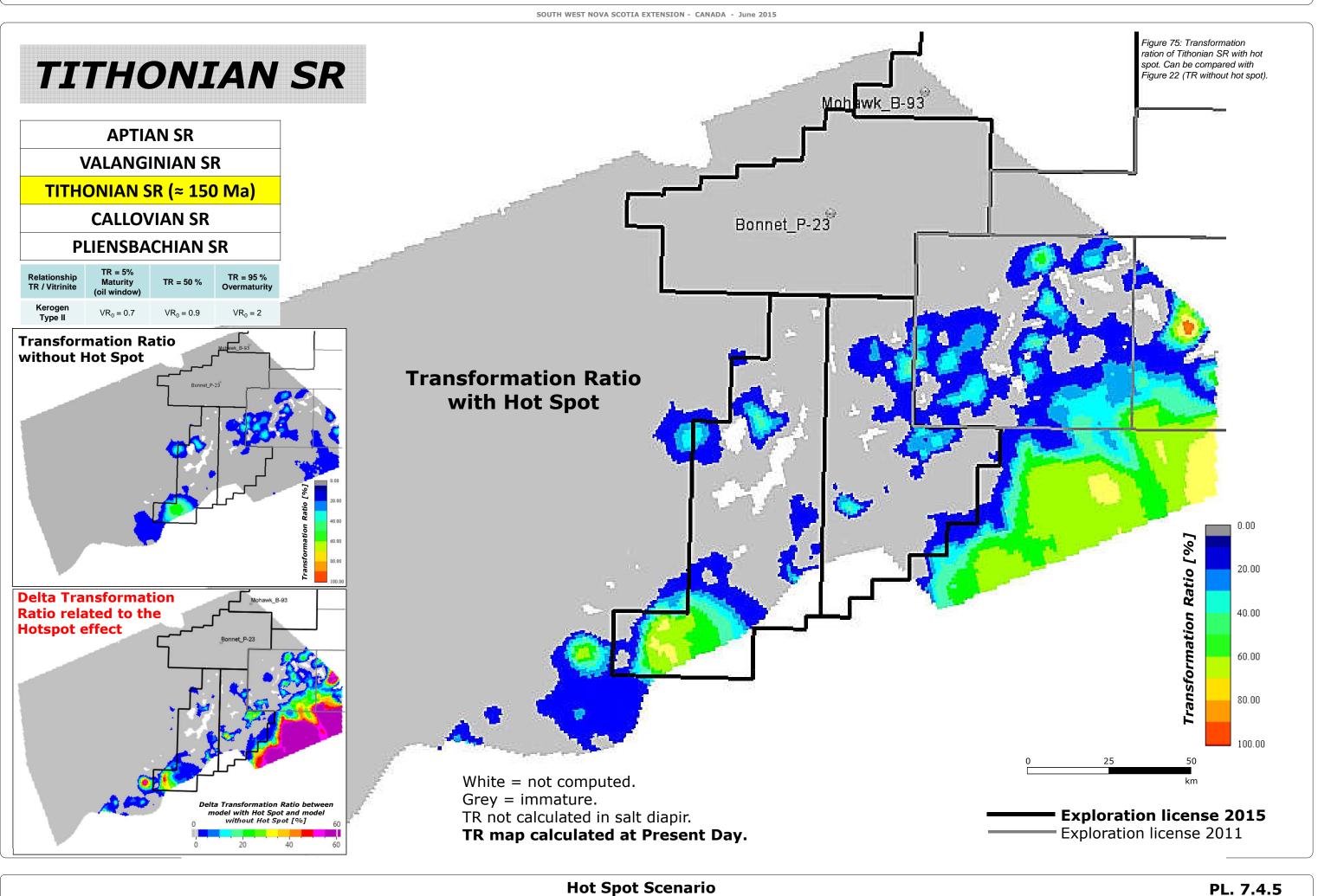
Figure 67: Map of the New England hotspot position throw the time and the maximum diameter and heat flow extension.

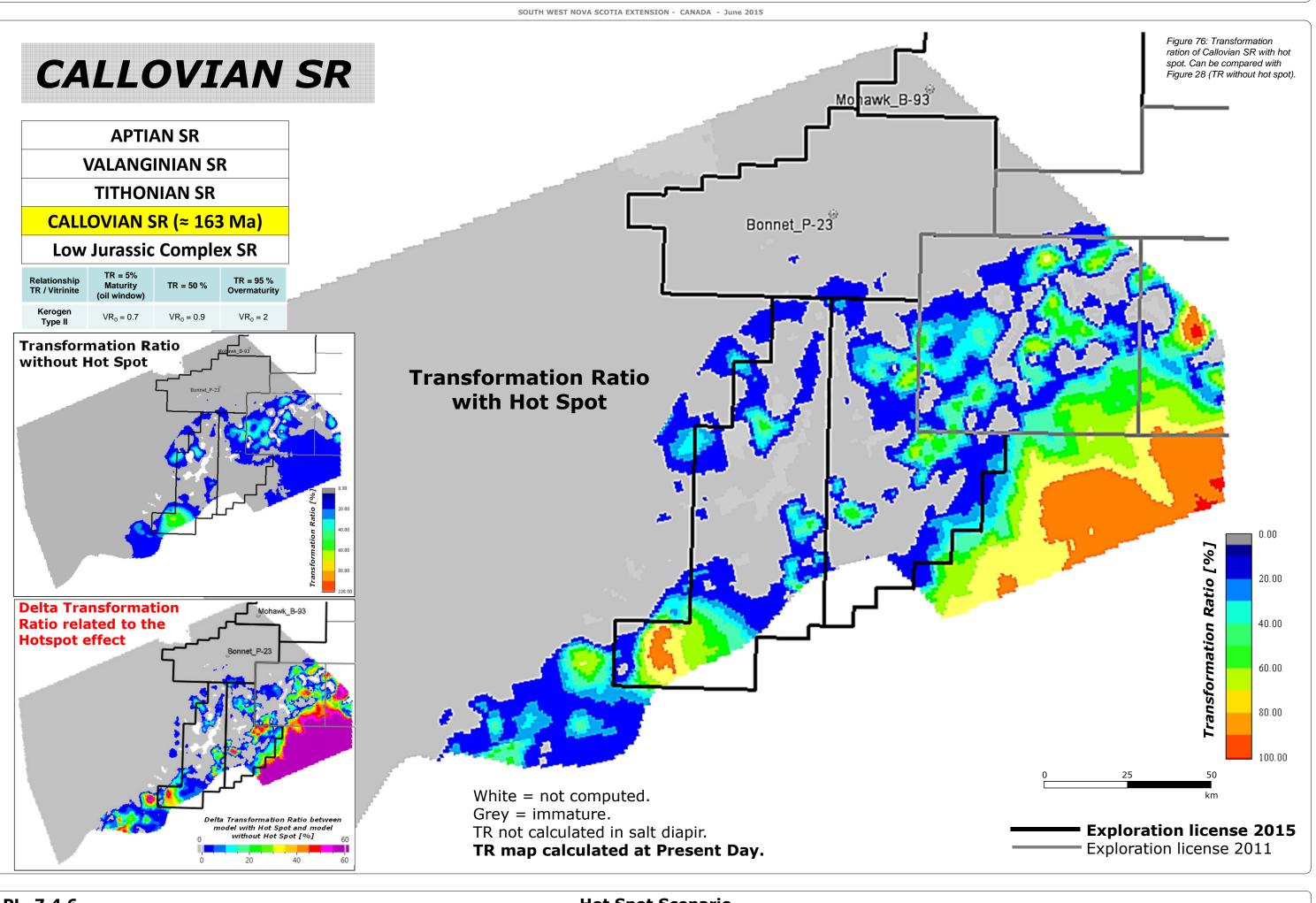
seamounts and flows at seabed (from Bowman et al., 2012). Chebucto well simulated in Figure 66 is located in Sable Basin (black point).

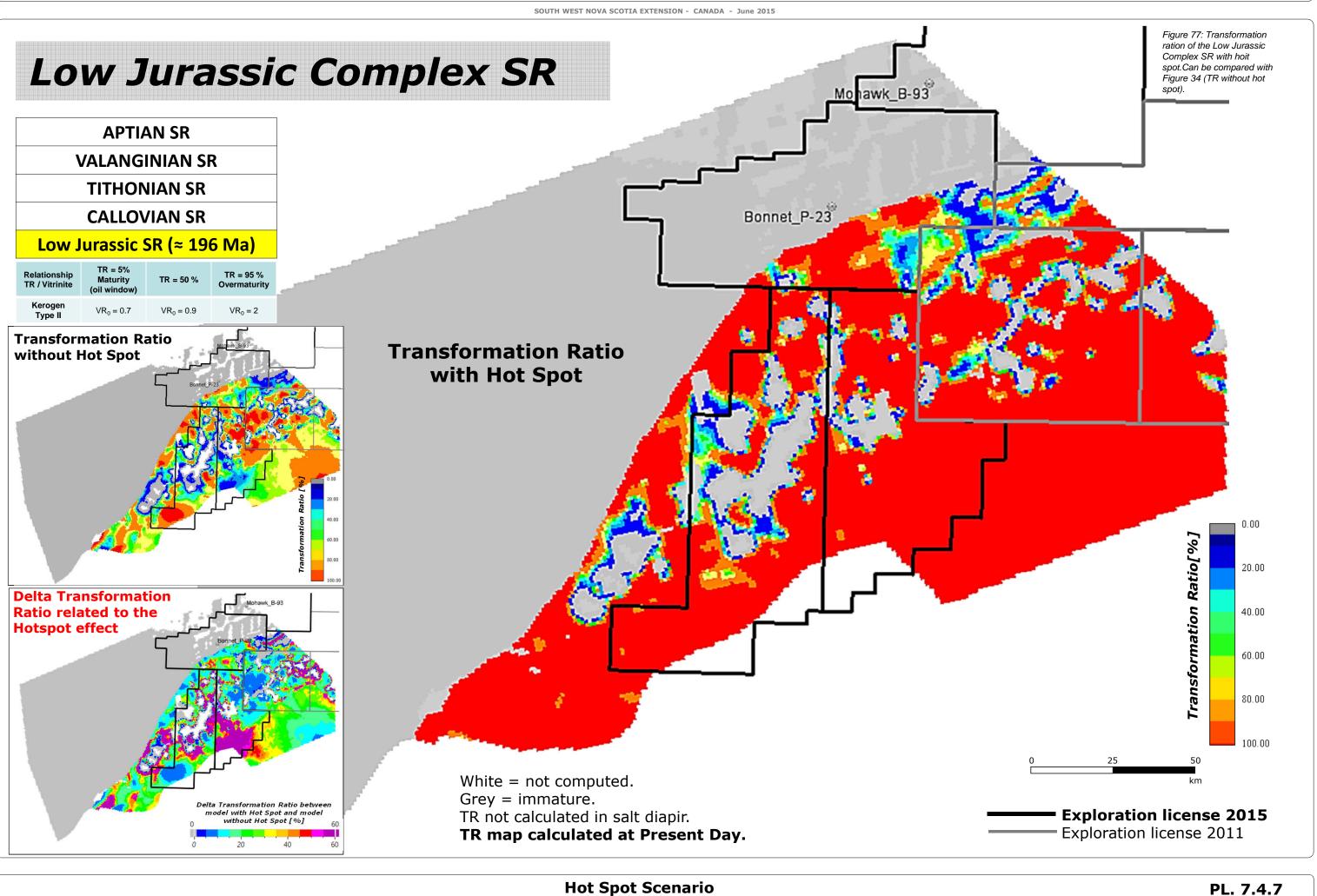



(From Bowman et al., 2012).


Hot Spot Scenario


Figure 66: Regional extent of Early Cretaceous volcanism, showing wells penetrating volcanic rocks and the positions of the


PL. 7.4.1



Conclusions of the Hot Spot Scenario

- Results on the modelling of a thermal disturbance during the Aptian with a heat flow up to 110 mw/m² allow to obtain a maturity curve that fits vitrinite data in Bonnet (Figure 72). This • suggest that high maturity vitrinite values at the bottom interval of Bonnet can be reproduced as the effect of a thermal disturbance event. However, a better comprehension of this kind of thermal events probably linked to the HotSpot's transit through the Nova Scotia margin will require more studies at regional and local scales.
- The probable presence of a thermal event at the end of the Early Cretaceous would have un strong impact on the maturity of source rocks in the Jurassic interval of the Shelburne Sub-• Basin. This would notably be evidenced by an early maturation and expulsion than in the reference scenario without HotSpot.
- The effect of a HotSpot thermal event would not only have an impact on maturity and timing of expulsion but probably also on the hydrocarbon phase and distribution. At the different stratigraphic levels. A more detailed description of their effect on expelled hydrocarbons can be assessed if required.

Bibliographic References

Bowman, S.J., Pe-Piper, G., Piper, D.J.W., Fensome, R.A., King, E.L., 2012. Early volcanism in the Scotian Basin, Can. J. Eartch. Sci., vol. 49, 1523-1539.

Dehler, S.A., Welford, J.K., 2013. Variations in rifting style and structure of the Scotian margin, Atlantic Canada, from 3D gravity inversion, from Mohriak, W. U., Danforth, A., Post, P. J., Brown, D. E., Tari, G. C., Nemcok, M.&Sinha, S. T. (eds) 2013. Conjugate Divergent Margins. Geological Society, London, Special Publications, 369, 289-300.

Campbell, I.H., 2005. Large igneous provinces and the mantle plume hypothesis. Elements, vol.1, 265-269.

Sleep, N.H., 1990. Monteregian Hotspot Tack: A long-lived Mantle plume. Journal of Geophysical Research, vol. 95 (B13), 983-990.