Improved Analysis of Harbour Porpoise Sounds

Final Report

David K. Mellinger and Selene Fregosi

December 4, 2020

1. Introduction

The overarching goal of this effort is to provide information for assuring compliance with the Species at
Risk Act (SARA) for tidal energy devices installed in the Bay of Fundy, Nova Scotia, Canada. Part of that
goal is to monitor one of those species at risk, the harbour porpoise (Phocoena phocoena), to assess
whether the devices are having any impact on the population. To do this, it is necessary to collect
information on the occurrence of the porpoises over time, which is done by making underwater acoustic
recordings and finding out how much of the time the porpoises are present. These recordings are
sufficiently extensive, typically spanning months, that manual review is not practicable. An automated
method is needed to scan the recordings for sounds of harbour porpoises and report the results in a way
that can be used for SARA compliance.

The goal of this project was to build such an automated system. The approach taken was to construct a
multi-stage system that takes as input a collection of recorded sound files and produces as output a
series of tables and figures summarizing harbour porpoise presence found from the recordings. The
structure of this was a system called FindPorpoises (Fig. 1) for automated detection and classification of
harbour porpoise echolocation clicks, followed by a module for producing the desired tables and figures
summarizing harbour porpoise presence. FindPorpoises in turn comprises three internal stages, for click
detection, click classification, and click grouping.

FindPorpoises
Sound files
(from AMAR recorder)

|

Click detection
(MATLAB app)

|

Click classification
(Python/Tensorflow code)

|
Click grouping
(MATLAB app)

v
Reporting and statistics
(R app)

Tables and figures

Figure 1. Overall structure of the system. The detection and classification portion is a
single runnable system called ‘FindPorpoises’, which is followed by a step that is
executed separately that makes tables and figures summarizing harbour porpoise
presence.

2. Detector

The detector used was a based on the ratio of the energy in the porpoise frequency band to the energy
in a lower “guard” band. The purpose of the guard band is to prevent loud noises that span the entire
frequency range, such as clunking and snapping sounds, from triggering false detections. The detector
was designed using the Ishmael (Fig. 2), a system for viewing, analyzing, and detecting bioacoustic
sounds of interest (Mellinger et al. 2018). See Appendix A for the parameter values that control detector
operation and Appendix C for details of the code implementing the detector.

m shmael 3.0.2 - DAforce\ AMARN2018-09\PAM2VAMARET3.1.51 20000 AMARBET3. 20190907 T113047... — O *

File Edit Run Compute View FRecord Detect Localize Actions Help
b . Time: 16.380 Freq 151474391 2 ¢

ERLLNE L

15.0) 15.5 16.0
m shmael 3.0.2 - Energy between 120000 Hz and 150000 Hz — O >

File Edit Run Yiew Help
mb
&0

ERLLNEL

15.0 15.5 16.0 16_5 1?'_[] 1?'_|55

Figure 2. Energy detector running in Ishmael. The top panel shows a noise-equalized
spectrogram including harbour porpoise echolocation clicks (vertical blue-to-white
stripes); the bottom panel shows the detection function, which has a peak at times when
harbour porpoises are present. The blue line is the detection threshold.

The detector operated on noise-equalized spectrograms. Noise equalization was performed to (1) make
the background noise level relatively constant and small so that the energy ratio would not trigger on it
(this was especially important in a place like Minas Passage, where flow rates and hence noise levels
vary by several orders of magnitude); (2) reduce and eliminate long-duration stationary signals, such as
from mechanical sources like vessels and machinery; and (3) correct for any non-flat frequency response
in the hydrophone and data-acquisition system.

Detection parameters were tuned using sound files from FORCE known to have harbour porpoise clicks
in them. Many of the recordings had quite high noise levels because they were made when the tide was
flooding or ebbing strongly, which made detection challenging. A key detection parameter is the

detection threshold; setting it higher results in fewer false detections but more missed detections, and
vice versa for setting it lower. Here, a relatively low threshold was chosen so as to have few missed
detections, with the knowledge that the large number of false detections would be eliminated by the
succeeding classifier stage. The complete list of detection parameters is in Appendix A.

The detector was initially operated in Ishmael, but when building the complete FindPorpoises system it
was realized that having a separate piece of software to install, run, and maintain was not necessary
when the computational process it was performing was a simple energy detector. Accordingly, the
detector was made into MATLAB code and incorporated into FindPorpoises.

3. Classifier

The classifier was a part of the porpoise monitoring software that was critical to successful operation of
the system. The classifier was a deep-learning system built using TensorFlow, a tool from Google, Inc. for
training and using deep-learning systems. The front-end environment used to interface to TensorFlow
was Jupyter Notebooks (https://jupyter.org) running Python (version 3.7) code. Developing and using a
classifier consists of the steps of data preparation, training, and deployment.

Data preparation. A classifier is intended to assign its input data to one of several classes. In this case,
the task was to train a classifier to recognize echolocation clicks from harbour porpoises, and the
corresponding classes were called “Click” and “NoClick” for data with and without echolocation clicks.
The most straightforward method of preparing data for a classifier is to have a number of labeled data
instances that contain the all classes the classifier is being trained on so that it can learn the difference
between the classes. In this case, that meant preparing some data with porpoise clicks labeled Click, as
well as some data without clicks labeled NoClick. To prepare a data set with these labeled data
instances, we examined the Minas Passage AMAR recordings in the spectrogram viewer Osprey
(Mellinger 2014) and labeled times at which clicks occurred. Clicks were identifiable, usually readily so,
in the spectrograms (Fig. 3). The labels consisted simply of times at which porpoise clicks occurred,
expressed as times in seconds from the start of each sound file. A total 6,407 clicks from 22 sound files
on 10 days, spanning times of heavy and light tidal flow noise, were manually labeled.

frequency, kHz
S N 2 2 oo
o [=] o (=] o

-
(=]
(=]

1131030 11:31:035 1131040 11:31:045 11:31:050 1131065 1131060 11:31:065 11:31:07.0 11:31:07.5
Figure 3. Clicks of harbour porpoises recorded by AMAR613 in Minas Passage on 7 Sept 20189.

Training data for the classifier was then generated from the labels and sound recordings. Each element
of Click training data — the input to the classifier — consisted of a }5-second-long spectrogram between
the frequencies of 90 and 160 kHz, equalized to a uniform background level. These spectrograms are
stored as .png files, with each spectrogram 141x499 pixels (frequency x time); spectrograms of this size
are the data inputs to the classifier network. Each sample had one of the labeled clicks at its center.

Training data files for the NoClick samples were generated using a set of sound files that were checked
to ensure there were no porpoise clicks present. There were 59 of these “no clicks present” sound files
representing 118 minutes of sound data from different points in the tide cycle so as to capture different
noise conditions. The NoClick samples were also ¥-second-long spectrograms, identical in shape to the
Click samples. The NoClick samples were taken from times within these “no clicks present” files at which
false detections occurred, with each false detection centered within its spectrogram. Because there was
a need for tens of thousands of training samples but only 6,407 labeled clicks, data augmentation was
used to expand the size of the data set. Augmentation was done by mixing the %-second audio signal of
a given click with a %-second noise sample taken from the “no clicks present” sound files.

Training data for the Click and NoClick data sets was generated by the MATLAB routine
generateAugmentedDataset .m. A total of 20,000 Click and 20,000 NoClick training data samples
were generated. Figure 4 shows examples of Click and NoClick samples.

Examples of Click samples

Examples of NoClick samples

Figure 4. Examples of ‘Click’ and ‘NoClick’ spectrogram samples.

Training. Training using TensorFlow was done using Jupyter Notebooks. A variety of network
architectures were tested, including one based on the Inception pre-trained network, and convolutional
networks employing rectified linear units (ReLU) and pooling layers. A number of different network
(model) shapes were tried as well, with different numbers of layers, layer sizes, and training epochs.
Training using the prepared data was done by using 90% of the data (36,000 data samples, half Click and
half NoClick) for training and using the remaining 10% (4,000 samples, likewise half and half) for testing
to find the network’s accuracy.

Network training was done in a series of 5-15 epochs depending on the network used and the
convergence rate of training. The best-performing network ended up having four pairs of convolution-
pooling layers and a 512-element flat, fully-connected (dense) layer before output (Fig. 5). This network
architecture is defined in the Jupyter Notebook porp try9 FINAL.ipynbandalsoin

classify grams.py. The network was trained for 8 epochs, with network performance over the
epochs shown in Fig. 6.

The final accuracy of the network was 99.1%. This network (actually the network’s set of weights) is
stored in the filemodel ML v13 99.1 5conv 512flat.hdf5.

Deployment. The network runs using Tensorflow 1.13 in Python 3.7. It was tested in Python 3.8 and did
not work, so you really need 3.7. The network’s operation is directed via classify grams.py,
which loads the network weights from the .hdf5 file, loads spectrograms to be processed, and calls
the TensorFlow function model .predict to apply the network to the data samples. See below about
the structure of FindPorpoises to see how classify_grams is invoked.

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 139, 497, 16) 160
max_pooling2d (MaxPooling2D) (None, 69, 248, 16) %]
conv2d_1 (Conv2D) (None, 67, 246, 32) 46490
max_pooling2d_1 (MaxPooling2 (None, 33, 123, 32) 0
conv2d_2 (Conv2D) (None, 31, 121, 64) 18496
max_pooling2d 2 (MaxPooling2 (None, 15, 60, 64) %]
conv2d_3 (Conv2D) (None, 13, 58, 64) 36928
max_pooling2d_3 (MaxPooling2 (None, 6, 29, 64) %]
conv2d_4 (Conv2D) (None, 4, 27, 64) 36928
max_pooling2d_4 (MaxPooling2 (None, 2, 13, 64) %]
flatten (Flatten) (None, 1664) (%]
dense (Dense) (None, 512) 852480
dense_1 (Dense) (None, 1) 513

Total params: 950,145
Trainable params: 950,145
Non-trainable params: ©

Figure 5. Architecture of the network (model) used as the classifier.

Tralning and seldation scourscy

0 - /—\E

L] L L] |] L] L]
[1 a ¥ |]] 7
Figure 6. Performance curve during training for the network used in classification.

See Appendix A for the parameter values that control classifier operation and Appendix C for details of
the code implementing the classifier.

4, Sequencer

Following the classifier, a sequence analyzer is applied. This relies on the summed autocorrelation
function, which takes a time series — in this case, the output of the classifier represented as a spike train
—as input and produces as output another time series when there are regularly repeating peaks in the
input function. It is windowed, so that it looks at a small (0.5-second) portion of the classifier output at a
time, and it is configured to detect regular peaks that repeat with a certain range of repetition rates. See
Appendix A for the parameter values that control the sequencer’s operation.

5. FindPorpoises

The above steps — detection, classification, and sequencing — are bundled together into a system called
FindPorpoises. This was compiled using the MATLAB Compiler into an installable Windows application,
with the installer called FindPorpoisesl.0 Installer web.exe. Included in the installation is
amanual, “Installing and Using FindPorpoises v1.0.docx”, detailing the installation,
configuration, and operation of FindPorpoises.

6. Display and Tabulation

The process for producing output tables and figures of porpoise occurrence was initially started in
MATLAB, using “202003010 Standardized hydroacoustic data report mock-up wRevisedFigures.docx” as

a guideline for the appearance of the final figures. After production of some figures, it was realized that
it would be easier in the long run to use R software being developing by Dr. Louise McGarry for
displaying similar figures for fish from hydroacoustic data. In part it would be easier because Dr.
McGarry’s software was nearing completion, and in part because any future changes or additions to the
R software would not have to be re-implemented in the MATLAB software. Accordingly, Dr. McGarry
sent her code, which was then adapted for use with the harbour porpoise data. Adaptation was
necessary because of the different kinds of data used as input: The fish data the code was originally
written for had detections of individual fish pingers, while the porpoise data output by FindPorpoises
represented the minutes throughout each day that harbour porpoises were present.

The porpoise version of the R software, called plotter porpoise.R, takes as input the minute-by-
minute tabulation of porpoise presence as output by FindPorpoises and produces as output a series of
tables and figures that show porpoise presence by week, time of day, tide state, and energy turbine
presence/absence.

References

Mellinger, D.K. (2014) Osprey 1.7 User Guide. NOAA Pac. Marine Environ. Lab., avail. from
ftp://ftp.pmel.noaa.gov/newport/klinck/FW599/0sprey Documentation - READ ME.pdf .

Mellinger, D.K., S.L. Nieukirk, and S.L. Heimlich. 2018. Ishmael 3.0 User Guide. 77 pp. Avail. from
http://www.bioacoustics.us/ishmael.html.

Appendix A: Detection and sequencing parameters
The detection and sequencing steps of FindPorpoises are controlled by a number of parameters, shown

below.

These are parameters for making spectrograms:

'frameSizeS' 1024/512000
'zeroPadFrac' 0
'overlapFrac' 1/2

'windowFn' 'hanning'
'clipDurS' 0.5
'freqRange' [90000 160000]

o° o 0 O o° o°

frame size, sec (1024 samples)
zero-padding before FFT
frame overlap

window type (Hann)
classifier file duration,

gram is trimmed to this

secC

These are parameters for noise-equalization of the spectrogram and energy-ratio detection:

'decayTime' 1.0

'freq' [120e3 150e3]
'ratioFreq’ [90e3 120e3]
'smoothTimeS' 0.002
"thresholdl' 0.007
"threshold2' 0.010
'"durLimitsS' [0.0 0.5]

o® o° o d° o° o° o°

exponential-decay time constant
energy detection band

energy ratio band

smoothing of resulting detection fn
initial threshold

final threshold (supersedes threshl)
min/max times to be over threshold

These are parameters for sequencing of detected clicks:

'classThresh'
'pkSpreads’
'periodS"

0.5
0.01
[
'windowDurS' 0
0
2
5

0.025 0.2]
.5
.2
0

'hopSizeS'
'seqThresh'
'mergeTimeS’'

o° o° o d° o° o° o°

classifier output below this counts as click
for spreading out peaks in click train

range of acceptable click repetition rates
window length to run summed autocorrelation
how often to run summed autocorrelation
threshold for detection after summed autocorr
successive sequences this close are merged

Appendix B: File types

These are the file types that are used as input or produced as intermediate and output files by
FindPorpoises:

* . wav sound file; input to FindPorpoises
* gram.png spectrogram of a sound (.wav) file
* ishdet.csv detections of candidate clicks made using the energy detection process

* class.csv output of the classifier (network, model) for each candidate click, with 0
representing ‘porpoise click’ and 1 representing ‘not porpoise click’

* seq.csv output of the sequencer, with porpoise presence/absence indicated for each minute
in the time span analyzed

Appendix C: Structure of the code

There are three principal phases for creating and using the classifier: preparing the dataset, training the
classifier, and running the classifier. Here are the principal modules, and relationships between them,
for those phases.

File extensions used in the system:

.m MATLAB code

.py Python code

.ipynb interactive Python notebook
.bat Windows (DOS) batch file

.r R code

Preparing the Dataset

The top module here is generateAugmentedDataset .m, a MATLAB script that calls other MATLAB
modules as follows:

generateAugmentedDataset.m

»| classifierParams.m

—»| loadClickLabels.m

»| loadIshmaelDets.m

readOneIshFile.m

applyThresh.m

»| getFilesBetween.m

—» getNoiseMarks.m

\—» matchIshDet.m

»| getClickMarks.m

»| loadClassClickMarks.m

p| makeAndSaveGrams.m

A key data structure for generateAugmentedDataset.mis a ‘mark’, a structure that represents a
¥%-second-long segment of sound in one of the sound files. A mark is a MATLAB struct with these fields:

. fname sound file name

.sam sample offset within that file of where the clip starts
.tSec time offset (seconds) corresponding to .sam

.durSam duration of the clip in samples (1/2 s, same for all clips)

If brief, here is what each of the modules above does:

generateAugmentedDataset .m: This calls all of the other functions. It has a long configuration
section in which are listed all of the sound files that do and don’t have clicks, as well as the label
files for those that do have clicks. It loads the labels for the labeled clicks, loads the detections
found by the detector, and then makes two sets of marks: one set for Click, and one set for
NoClick. It also can load ‘class click marks’, which are sounds that were erroneously found by the
classifier but don’t have actual porpoise clicks in them; these provide additional NoClick marks.
Then the two sets of marks are handed to makeAndSaveGrams .m, which uses each mark to
create a J-second spectrogram and save it as a .png file.

classifierParams.m: Defines various parameters that go into the classifier. It has three sections,
one for spectrogram parameters (gramParams), one for detection parameters (detParams),
and one for sequencer parameters (segParams).

loadClickLabels.m: Loads the times of manually labeled clicks.

loadIshmaelDets.m: Loads the times when the detector (originally the Ishmael detector, but now
done in MATLAB) found clicks. Most of these are false detections and are weeded out by the
classifier. These might be contained in several log files.

readOneIshFile.m: Load a single log file that has times of detections.

applyThresh.m: When the detector runs, it uses a certain threshold (as defined in
classifierParams.m) when deciding what counts as a detection. It’s possible to raise this threshold
when loading the detection times; raising it eliminates some of the detections, potentially a lot of
them.

getFilesBetween.m: Given start- and end-times, find all sound files present between these times.

getNoiseMarks.m: Given a set of files known not to have and porpoise clicks and the times of
detections in those files, generate a set of marks centered on the detection times.

matchIshDet .m: Given a time, find the nearest detection.

getClickMarks.m: Given a set of click logs, make a set of marks randomly chosen (with
replacement) from among them. Each mark encompasses a period of time with some minimum
number of porpoise clicks in it.

loadClassClickMarks.m: Load times that the classifier registered an incorrect positive
classification.

makeAndSaveGrams .m: Given a set of marks, make spectrograms of the time periods the marks refer
to. As an optional means of augmentation, mix in random amounts of noise from a second set of
marks.

Also of note is testClassifier.m, which makes a set of spectrograms to further test the classifier
beyond the spectrograms in the main data set.

Training the Classifier

The classifier network is trained in the Jupyter Notebook porp try9 FINAL.ipynb. (Jupyter
Notebooks are installed with the Anaconda3 system; see “Installing and Using FindPorpoises” for
information on doing this.) This notebook has a series of cells that can be executed one-by-one via the
Run button at top, with not all cells necessary to execute every time. Note that this notebook refers to
the network as the “model”; these terms are synonymous.

The cells in the notebook are as follows:

License information cell, nothing executable.

Cell used as a scratch space for testing bites of code during development; can be ignored.
- Cell to create directory names. Must be run once.

- Cell to prepare for plotting; not necessary to run unless you wish to plot images.

- Cell to plot images; not necessary to run unless you wish to do this.

- TensorFlow installation cell; must be run once EVER on a given computer and then can be
ignored. Normally the line that actually does the installation, the one starting
“lpip install tensorflow..”,is commented out so | don’t accidentally try to re-install
TensorFlow. To run this cell, remove the ‘#' symbol at the beginning of that line, run the cell,
and then (if installation is successful) put the ‘#' back.

- Cell to define the model. Must be run each time you want to create and train a model.
- Cell to compile the model. Must be run after you define a model in the preceding cell.

- Cell that prepares to get (flow) input data from the data directories. Creates data generators for
the training and testing data. Must be run after compiling the model.

- Cell to train the model (model). This is what actually retrieves the training data using the data
generators and trains the model (i.e., sets the model weights). This cell can take a while --
several hours on my computer —to run.

- Cell to save the model weights. Run this after training the model if you want to save the
resulting model. This cell can save in one of two formats, either as a Pickle file orasa .hdf5
file, with the one chosen indicated by “if (True)” code. | did not have success with Pickle
files and now use . hdf5 exclusively.

Cell to load a weights file. Use this if you've saved a model and want to re-load it for testing,
rather than training a new model.

Cell to run the model on example cases. This works with testClassifier.m, which makes a
set of spectrograms to further test the classifier beyond the ones in the main data set.

Cell to show intermediate representations. This is for seeing how the model operates and
debugging it.

Cell to display accuracy and loss graphically.

Cell to show the training history. This is mostly a textual representation of what is shown in the
previous cell.

Cleanup cell. This is needed only if you’re using Jupyter Notebooks with other notebooks and
need to clean up the workspace before using another notebook.

Running the Classifier

FindPorpoises.m runs the classifier. The installable version of FindPorpoises, namely FindPorpoises.exe,
is created by the MATLAB compiler, but if you have MATLAB, you can run it as a MATLAB script with
more flexibility. It calls other modules as follows:

FindPorpoises.m

processInputArgs.m

getPorpConfig.m

classifierParams.m

parseGramParams.m

getAmarDates.m

loadIshmaelDets.m

makeWholeFileGrams.m

getNeedIshLog

simulateIshmael

pycommand.bat

classify grams.py

sequencer.m

sumautocorr.m

dpeaks.m

plotPorpoiseFigures.m

Here is what these modules do:
FindPorpoises.m: Thisis the main modules that calls all the other ones.

processInputArgs.m: Reads the command line, parses flags like “-detect” and “-sequence”, and
gets the configuration file name.

getPorpConfig.m: Reads the configuration file, return a ‘cfg’ structure with its contents.

classifierParams.m: Reads the parameters used by the detector, classifier, and sequencer. This is
the same MATLAB routine described above in “Preparing the Dataset”.

parseGramParams .m: Converts spectrogram parameters expressed in seconds and hertz into
numbers of samples and frequency bin numbers.

getAmarDates.m: Parses file names to get their date/time information.

loadIshmaelDets.m: Loads any existing detection information from * ishdet.csv files for the
desired date/time range. This information maybe be absent or partially absent. See
makeWholeFileGrams.m next.

makeWholeFileGrams.m: Makes a spectrogram of each sound file and saves it with the extension
“.gram”. ALSO, if detection information for a given sound file is absent, runs the detection
process (energy detector with given frequency bands) using that spectrogram and stores the
resulting detectionsin * ishdet.csv files.

getNeedIshLog.m: Determines whether an Ishmael log file (*_ishdet.csv, containing detection
information) exists for a given sound file.

simulateIshmael.m: Runs the energy detection process, applies a detection threshold, finds
detections (peaks in the detection function), and stores the times and heights of detections in
* ishdet.csvfiles.

pycommand.bat: This is a Windows (DOS) script, called via MATLAB’s dos function, for running
classify grams.py in Python. Itis needed because there are certain environment variables
that must be defined using Anaconda’s “activate base” command. So it executes that command
and then starts Pythontorun classify grams.py.

classify grams.py: Thisis Python code for running the classifier using pre-trained model weights
stored in a . hdf5 file. It creates a model (network) in TensorFlow, compiles it, loads the model
weights from the . hdf5 file, and loads any detection logs (* ishdet.csv files) present. Then
it iterates through the stored whole-file spectrograms (* gram.png files). For each stored
whole-file spectrogram (each * gram.png file), it loads the spectrogram and iterates through
the detections for that spectrogram; for each one, it extracts a %.-second portion of the
spectrogram centered on that detection and calls predict arr () torunthe model onit.
predict arrinturn calls the TensorFlow routine model.predict () to runthe model.
(Actually it does this in batches of %-second spectrograms of size batch size for efficiency.)
The result of classification is a number typically between 0 and 1, with O representing a click
classified as a porpoise and 1 a non-porpoise sound. The results of classification for all the
detections are writtento * class.csv files.

sequencer .m: This runs the sequencer. The sequencer loads the * class.csv files with the
classifier outputs and applies a summed autocorrelation to them, then detects peaks in the
resulting function. The results are then written to * seq. csv output files on a minute-by-
minute basis, with porpoise presence/absence indicated for each minute analyzed.

sumautocorr .m: This is the summed autocorrelation function, which takes a time series as input and
produces as output a function that is high when there are regularly repeating peaks and low
otherwise.

dpeaks .m: This detects peaks in the function output by sumautocorr.

plotPorpoiseFigures.m: Thisis now superseded by the R code for plotting,
plotter porpoise.R.

