CHAPTER 5 COMMON RISK SEGMENT (CRS) MAPS & THE YET TO FIND (YTF)

to all the

fred a

CHS, Esri, GEBCO, DeLorme, NaturalVue

Nova Scotia Play Fairway Analysis 2023 - CANADA - June 2023

Pliensbachian Source Rock CRS maps Presence/Maturity/Timing

(Presence/Maturity/Timing)

Timing by combining the three individual CRS maps.

This map summarize the hydrocarbon charge expected from the Pliensbachian source rock assuming vertical migration. Note that it doesn't take into account lateral migration.

Pliensbachian CCRS map gives the potential hydrocarbon charge for reservoir in the Jurassic series (Mohican, Mic Mac and Abenaki formation for example).

Scotian Basin Integration Atlas 2023 – CANADA – June 2023

Tithonian Source Rock CRS maps Presence/Maturity/Timing

Nova Scotia Play Fairway Analysis 2023 - CANADA - June 2023

Pliensbachian + Tithonian source rocks CCRS map

Scotian Basin Integration Atlas 2023 – CANADA – June 2023

Seal Effectiveness

Based on seal capillary pressure extracted from basin modeling (lithology and compaction). Red color results from a cut-off that highlights no efficient capillary pressure to maintain hydrocarbon column.

Seal Presence

Based on sedimentologic and stratigraphic analysis, the seal presence correspond to the TST lithofacies distribution above the expected reservoir. It highlights the probability to encounter a vertical seal.

CCRS Seal

Combined Seal presence and effectiveness. The map shows low risk in the outer shelf to deep marine environment and medium risk upstream in the continental area.

Reservoir

Reservoir Effectiveness

Based on reservoir porosity simulated in the basin modeling through burial and pore-pressure evolution. Medium risk (yellow) highlights porosity inferior to 6%.

Reservoir Presence

Based GDE mapping. This map highlights the probability encounter a reservoir. Envelop has been drawn in order to catch areas of expected reservoir geobodies.

CCRS Reservoir

Combined reservoir presence and effectiveness.

Combined CRS maps for Pliensbachian source rock

(Presence/Maturity/Timing)

(for more detail, see PL. 5.1)

Reservoir Effectiveness

Based on reservoir porosity simulated in the basin modeling through burial and pore-pressure evolution. Medium risk (yellow) highlights porosity inferior to 6%.

Reservoir Presence

Based GDE mapping. This map highlights the probability encounter a reservoir. Envelop has been drawn in order to catch areas of expected reservoir geobodies.

Charge

Combined CRS maps for Pliensbachian + Tithonian source rock

(Presence/Maturity/Timing)

(for more detail, see PL. 5.3)

CCRS map of MS2 By-Pass / Erosion Venture Thebaud Marmora By-Pass / Erosion Starved area Figure 6: CCRS map of the Megasequence MS2 The very early Lower Cretaceous MS2 play shows large favorable areas for exploration in the eastern side. MS2 has two source rock contributions (Tithonian and Pliensbachian) moreover it is deposited just above the Tithonian source rock what limit the migration risk. In the east, reservoir presence is associated to a strong forced regression transferring a large volume of clastic sediments from shelf to deep water area through deltaic and turbiditic system (Lower Mississauga Formation). Large part of the

Discoveries

shelf is in by-pass or erosion what limit the reservoir extension to the north. Border of the carbonate platform in the center such as western side can present some potential but with limited extension.

Lower Risk

Medium Risk

Higher Risk

Reservoir Effectiveness

Based on reservoir porosity simulated in the basin modeling through burial and pore-pressure evolution. Medium, risk (yellow) highlights porosity inferior to 6%.

Reservoir Presence

Based GDE mapping. This map highlights the probability encounter a reservoir. Envelop has been drawn in order to catch areas of expected reservoir geobodies.

for Pliensbachian + Tithonian

Medium Risk

Higher Risk

O Discoveries

Scotian Basin Integration Atlas 2023 – CANADA – June 2023

Seal

Seal Effectiveness

Based on seal capillary pressure extracted from basin modeling (lithology and compaction). Red color results from a cut-off that highlights no efficient capillary pressure to maintain hydrocarbon column.

Seal Presence

Based on sedimentologic and stratigraphic analysis, the seal presence correspond to the TST lithofacies distribution above the expected reservoir. It highlights the probability to encounter a vertical seal.

CCRS Seal

Combined Seal presence and effectiveness. The map shows mainly low risk in the outer shelf to deep marine environment, and medium risk upstream in the continental to fluvial plain environment with limited burial.

Reservoir

Reservoir Effectiveness

Based on reservoir porosity simulated in the basin modeling through burial and pore-pressure evolution. Medium, risk (yellow) highlights porosity inferior to 6%.

Reservoir Presence

Based GDE mapping. This map highlights the probability encounter a reservoir. Envelop has been drawn in order to catch areas of expected reservoir geobodies.

CCRS Reservoir to Combined reservoir presence and effectiveness

Charge

Combined CRS maps for Pliensbachian + Tithonian source rock

(Presence/Maturity/Timing)

(for more detail, see PL. 5.3)

Higher Risk

Scotian Basin Integration Atlas 2023 – CANADA – June 2023

Total	Total Oil	Total Gas	Total Oil &
	(Bbl)	(Tcf)	Gas (Bbloe)
P90 Low Case	19.3	47.4	25.8
P50 Most Likely	22.6	64.6	31.5
P10 High Case	49.2	148.4	69.6