

CHS, Esri, GEBCO, DeLorme, NaturalVue

Scotian Basin Integration Atlas 2023 – CANADA – June 2023

Nova Scotia Deep Water Potential

The estimation of the resource potential was done in three stages (Figure 1) that included: (1) a whole basin Yet to Find (YTF) calculation, (2) a collaborative ranking of 25 candidate leads assembled from previous public reports and select structures identified during seismic mapping, and (3) conventional volumetrics calculated for 10 top ranked leads.

(Stage 1) A Scotian Basin Yet To Find (YTF) was calculated at ~32 Bboe (in place and unrisked) using a 3D petroleum systems model (Beicip-Franlab's TEMIS; Figure 1, Stage 1).

(Stage 2) Stonehouse, Belleisle, Thorburn, Piscatiqui, Oakfield, Weymouth Deep, Seawolf, Liscomb East, Brooklyn, and Berwick named leads were prioritized after a collaborative ranking exercise (Figure 1, Stage 2). A score was applied for candidate leads based on trap, charge, seal, and reservoir to assist in selecting 10 leads for volumetric calculations with emphasis on Sable and Central Slope areas.

(Stage 3) Each of the top ten ranked leads have volumes > 250 MMboe (in place) based on a conventional volumetrics approach with lead GCOS in the range 10-25%. The top 5 leads have volumes exceeding 1 Bboe in place (Figure 1, Stage 3).

Stonehouse Belleisle Thorburn Piscatiqui Oakfield Weymouth Deep Seawolf Liscomb East Brooklyn Berwick

Kilometers

0 50 100

Figure 3: Top 10 leads hydrocarbon in place (unrisked) versus geologic chance of success

Deepwater Lead Mapping

Stage 1: After calculating total YTF, potential deepwater leads selected through rigorous seismic interpretation and geologic understanding

Stage 2: All tiers of leads were screened on the basis of individual scale (likely volume), satellite upside and present day water depth (a proxy for economic value). They were then ranked using the geologic criterion outlined on PL. 6.3.

Top 10 Lead Evaluation									
Trap Style	STOIIP (MMbbl)	Oil Prospective Resources (MMbbl)	GIIP (Bcf)	Gas Prospective Resources (Bcf)	GIIP + STOIPP (MMboe)				
Anticline	13	10	37113	27795	4961				
Trap against salt	1424	536	7485	5600	2422				
Anticline	99	39	8323	6235	1209				
Trap against salt	1281	322	0.15	0.11	1281				
Stratigraphic trap	235	80	5778	4317	1005				
Anticline	99	39	4350	3246	679				
Trap against salt	639	147	216	161	668				
Anticline	393	156	540	107	465				
Trap against salt	0	0	2764	2061	369				
Anticline	1	1	2232	1672	299				

Stage 3A: Volumes of each of the 10 leads were then estimated, as detailed on PL. 6.4, and probabilistically modeled to

get minimum, most likely, and maximum values.

	Geologic Chance of Success Calculation							
	Lead Name 🚽	Trap Style 🔽	Trap Risk	Charge Rist	Reservoir Risk	GCOS 🚽		
	Liscomb East	Anticline	0.75	0.50	0.75	28%		
	Belleisle	Trap against salt	0.50	0.75	0.75	28%		
	Weymouth Deep	Anticline	0.75	0.50	0.50	19%		
	Oakfield	Stratigraphic trap	0.25	0.75	0.75	14%		
-	Thorburn	Anticline	0.50	0.50	0.75	19%		
	Stonehouse	Anticline	0.50	0.75	0.50	19%		
	Piscatiqui	Trap against salt	0.25	0.75	0.75	14%		
	Seawolf	Trap against salt	0.25	0.75	0.75	14%		
	Berwick	Anticline	0.50	0.25	0.75	9%		
	Brooklyn	Trap against salt	0.25	0.50	0.75	9%		

Figure 1: Outline of the three stages of resource estimation

Stage 3B: The geologic chance of success (GCOS) was then calculated, outlined on PL. 6.5, using similar criterion to lead ranking.

Scotian Basin Integration Atlas 2023 - CANADA - June 2023

Yet to Find

Total	Total Oil	Total Gas	Total Oil &
TOLAT	(Bbl)	(Tcf)	Gas (Bbloe)
P90 Low Case	19.3	47.4	25.8
P50 Most Likely	22.6	64.6	31.5
P10 High Case	49.2	148.4	69.6

Scotian Basin Integration Atlas 2023 – CANADA – June 2023

Workflow for the selection of the 10 leads

A subset of 10 leads was selected for more detailed individual assessment

Deepwater leads were initially identified by CNSOPB and Beicip-Franlab (Figure 6), then each lead was then screened on the basis of scores, estimating; (1) a score for the hydrocarbon charge (source rock efficiency and timing of migration), trap (closure and lateral seal) and reservoir presence.

Figure 6: Location map of the identified leads

Leads score and ranking

The final score combines the individual scores: [Trap] x [Charge] x [Seal] x [Reservoir]. The score is relative, ranging from 2 to 8, for the 10 top ranked leads then selected for further evaluation.

Closure Area and Water Depth are not considered in the score but can be used for ranking leads afterwards. The geographic location is also not considered as a criterion.

Figure 7: Location map of the top 10 evaluated leads

For the 10 selected leads and prospects, hydrocarbon (HC) volumes in place were estimated with the following formula:

Leads Selection

Input parameters for volumetrics computation

Minimum, most likely and maximum values was estimated for each of the individual parameter in above formula.

Uncertainties on Gross Rock Volumes (GRV)

GRV minimum, most likely and maximum values were computed (visualized in Figure 8) from:

- The depth structure grid of the top reference horizon and the minimum, most likely and maximum closures were delivered by the CNSOPB.
- Average gross thickness above the most likely closure interpreting the top and base of each lead and converting them in depth with the reference velocity model.

Figure 8: Schematic of Gross Rock Volume calculation

Uncertainties on the other parameters for volumetrics computation

• Net sand thickness to Gross thickness ratio (NTG) minimum, most likely and maximum values were computed from Net minimum, most likely and maximum values estimated from the Petroleum system Model and Average gross thickness as described above.

• Minimum effective porosity PHIE = 12%, most likely PHIE = 18% and maximum PHIE = 22% as agreed with CNSOPB.

• Minimum hydrocarbon saturation Shc = 50%, most likely Shc = 60% and maximum Shc = 70% as agreed with CNSOPB.

• The ratio (Oil m3 /Gas m3) was estimated for each lead from the petroleum system model

• The most likely Formation Volume Factor (FVF), namely 1/Bo for oil and 1/Bg for gas were estimated from the petroleum system model. 98 % of the most likely FVF value was considered as the minimum value and 102% of the most likely FVF value was considered as the minimum value.

• Recovery factors minimum, most likely and maximum values were computed for oil and gas as follows:

- Gas minimum recovery factor RF = 65%, most likely RF = 75% and maximum RF = 85% as agreed with CNSOPB
- Oil minimum RF = 15%, most likely RF = 20% and maximum RF = 25% as agreed with CNSOPB

Scotian Basin Integration Atlas 2023 – CANADA – June 2023

Volumetrics computation results

Volumes in place of oil (STOIIP) and gas (GIIP) and prospective resources of oil and gas were computed for each of the 10 selected leads (Figure 9). Monte-Carlo simulation was then run to establish the distribution of the volume in place and compute the P90, P50 and P10 deciles of the distribution. Then minimum, most likely, and maximum values of recovery factor were also applied to compute through Monte-Carlo simulation the prospective resources distribution for each lead or prospect and compute its deciles.

This process will be carried out according to the SPE Petroleum Resources Management System (PRMS).

An example of volume in place and prospective resources is presented in the table hereafter for one of the 10 selected leads, namely Belleisle.

The input parameters and the results related to gas are displayed in red whereas the input parameters and the results for oil are displayed in green.

Parameter	Min/P90 💌	Most likely/P50 🔼	Max/P10 🗾
Apex of structure (mbsl)		-5140	
Closure depth (mbsl)	-5155	-5605	-6140
Closure area (sq.km)	2	65	141
Slab GRV (MMm3)	837	30356	65754
GRV (MMm3)	1138	16142	67655
N/G	22%	39%	56%
PHIE	12%	18%	22%
Shc	50%	60%	70%
1/Bo	0.52	0.53	0.54
RF Oil	15%	20%	25%
1/Bg	350	357	364
RF Gas	65%	75%	85%
bbl/m3		6.28981	
cf / m3		35.31467	
STOIIP (MMbbl)	589	1398	2843
Prospective Resources (MMbbl)	222	529	1086
GIIP (Bcf)	3095	7351	14989
Prospective Resources (Bcf)	2344	5499	11306

Volumetrics computation results

Volumes in place of oil (STOIIP) and gas (GIIP) and prospective resources of oil and gas were computed for each of the 10 selected leads displayed on the figure below and with the input parameters presenter to the left of this plate.

Figure 9: Top 10 evaluated leads

The table below shows the lead volumes for the selected top 10 leads, indicating for each one gas & liquids. This table is sorted by size in Mmboe assuming that one barrel of oil is standardized to have the same amount of energy content as 7,500 cubic feet of natural gas as estimated with the petroleum system model on the 10 selected leads.

Lead Name	Trap Style	STOIIP (MMbbl)	Oil Prospective Resources (MMbbl)	GIIP (Bcf)	Gas Prospective Resources (Bcf)	GIIP + STOIPP (MMboe)
Stonehouse	Anticline	13	10	37113	27795	4961
Belleisle	Trap against salt	1424	536	7485	5600	2422
Thorburn	Anticline	99	39	8323	6235	1209
Piscatiqui	Trap against salt	1281	322	0.15	0.11	1281
Oakfield	Stratigraphic trap	235	80	5778	4317	1005
Weymouth Deep	Anticline	99	39	4350	3246	679
Seawolf	Trap against salt	639	147	216	161	668
Liscomb East	Anticline	393	156	540	107	465
Brooklyn	Trap against salt	0	0	2764	2061	369
Berwick	Anticline	1	1	2232	1672	299

Workflow for the evaluation of the GCOS of the 10 leads

The geological chance of success (GCOS) has been estimated for the 10 selected leads by multiplying the chance of success (COS) for the charge, the seal and the reservoir, assuming these individual chances of success are independent of each other.

• GCOS = Trap COS x Charge COS x Reservoir COS

Note that the individual risk parameters in this risking model are a combination of play and prospect risk; i.e. each risk (e.g. for reservoir) takes into account the likelihood of the play element being present in the play area (as guided by the relevant CRS map in Chapter 5) and the chance for reservoir to be found in the individual trap. Hence, the GCOS defined by the above formula expresses the total COS for an individual leads. GCOS, in combination with volume estimates, helps to rank the selected leads against each other.

Figure 10: Top 10 evaluated leads

Methodology to evaluate COS for the trap

Traps are assumed to be a combination of closure, lateral seal and vertical seal. The 3 following types of traps were considered for the ranking:

- Anticline (3 or 4-way-deep closure): Reliability is considered the highest
- Trap against salt: Reliability is moderate due to time to depth conversion uncertainties on the trap
- Stratigraphic trap: Reliability is moderate because trap is subtle

Vertical sealing capacity is based on GDE maps and geological knowledge (well and seismic data). The ranking of Seal parameter is defined as follows:

Ranking of Trap is carried out as follows:

- Closure:
- Anticline: high confidence / low uncertainty => COS is 0.75
- Trap against salt: moderate confidence / moderate uncertainty => COS is 0.5
- Stratigraphic trap: moderate confidence / moderate uncertainty => COS is 0.5
- Lateral seal:
 - If the lateral seal layer is proven (facies juxtaposition or pinch out), then confidence is high, and COS is 0.75.
 - If the lateral seal is likely, but there is possible leakage through salt weld, fault of juxtaposed carrier beds, then confidence is moderate, and COS is 0.5.
 - If lack of integrity is proven or highly suspected, then confidence is low, and COS is 0.25.
- Vertical seal:
 - If the vertical seal layer is proven (facies and thickness), not faulted, not close to the surface (at any time of trap history), then confidence is high, and COS is 0.75.
 - If the vertical seal is proven, but there is possible leakage (e.g., faulted overburden, permeable facies, limited thickness or burial, significant erosion), then confidence is moderate, and COS is 0.5.
 - If lack of integrity is evidenced, then confidence is low, and scores is 0.25.

COS Trap is estimated taking into consideration the confidence for the closure and the confidence for the lateral seal and the confidence for the vertical seal :

Trap COS:

- Formula: Trap COS = [Closure x Lateral seal x Vertical seal] / 0.75²
- Score 0.75: Trap is likely, high confidence level
- Score 0.50: Trap is possible, moderate confidence level
- Score 0.25: Trap is unlikely, low confidence level

Methodology to evaluate COS for the hydrocarbon charge

COS for the Hydrocarbon charge is based on CCRS maps for both source rocks Tithonian and Pliensbachian (Chapter 4: THERMAL AND PRESSURE MODEL, Figure 27 and 29). It includes:

- A COS based on source rock presence
- A COS based on source rock maturity
- A COS based on Timing (hydrocarbon generation timing)

The selected leads, above the Tithonian source rock, sum the CCRS maps for both source rock Tithonian and Pliensbachian (Chapter 5: COMMON RISK SEGMENT (CRS) maps and YTF, PL. 3)

Hydrocarbon Charge COS:

- Score 0.75: HC Charge is likely, high confidence level
- Score 0.50: HC Charge is possible, moderate confidence level
- Score 0.25: HC Charge is unlikely, low confidence level

Methodology to evaluate COS for the reservoir

Reservoir element is evaluated based on GDE maps, seismic attribute extractions and regional knowledge with the following assumptions and results:

COS for the reservoir is estimated taking into consideration the confidence in the reservoir facies presence prediction with a variable COS and the reservoir effectiveness which is likely (low risk) for the 10 leads under evaluation.

COS for the reservoir:

- Reservoir facies is likely, COS is 0.75.
- Reservoir facies is possible, scores is 0.5.
- Reservoir facies is unlikely, scores is 025.

Leads score and ranking

The GCOS combines the individual COS: [Trap] x [Charge] x [Reservoir]. The score is relative, ranging from 9% to 28%. for the 10 top ranked leads then selected for further evaluation. This is a purely technical ranking based on the chance of finding trapped hydrocarbons. It does not include any economic considerations.

Lead Name 🔽	Trap Style 🚽	Trap Risk 🚽	Charge Risk	Reservoir Risk	GCOS 🖵
Liscomb East	Anticline	0.75	0.50	0.75	28%
Belleisle	Trap against salt	0.50	0.75	0.75	28%
Weymouth Deep	Anticline	0.75	0.50	0.50	19 %
Oakfield	Stratigraphic trap	0.25	0.75	0.75	14%
Thorburn	Anticline	0.50	0.50	0.75	19%
Stonehouse	Anticline	0.50	0.75	0.50	19%
Piscatiqui	Trap against salt	0.25	0.75	0.75	14%
Seawolf	Trap against salt	0.25	0.75	0.75	14%
Berwick	Anticline	0.50	0.25	0.75	9%
Brooklyn	Trap against salt	0.25	0.50	0.75	9%

Scotian Basin Integration Atlas 2023 – CANADA – June 2023

Lead Belleisle

Parameter 💌	Min/P90 🔻	Most likely/P50 🔻	Max/P10 💌
Apex of structure (mbsl)		-5140	
Closure depth (mbsl)	-5155	-5605	-6140
Closure area (sq.km)	2	65	141
Slab GRV (MMm3)	837	30356	65754
GRV (MMm3)	1138	16142	67655
K 125 Dep	th Map (m) Ar Es	oprox. WD: 1950 m stimated TD: -5140 n	nbsl

Parameter	Min/P90 💌	Most likely/P50 💌	Max/P10 💌
Apex of structure (mbsl)		-5140	
Closure depth (mbsl)	-5155	-5605	-6140
Closure area (sq.km)	2	65	141
Slab GRV (MMm3)	837	30356	65754
GRV (MMm3)	1138	16142	67655
N/G	22%	39%	56%
PHIE	12%	18%	22%
Sg	50%	60%	70%
1/Bo	0.52	0.53	0.54
RF Oil	15%	20%	25%
1/Bg	350	357	364
RF Gas	65%	75%	85%
bbl/m3		6.28981	
cf / m3		35.31467	
STOIIP (MMbbl)	582	1424	2896
Prospective Resources (MMbbl)	215	536	1095
GIIP (Bcf)	3043	7485	15213
Prospective Resources (Bcf)	2270	5600	11369

Lead Name 🖵	Trap Risk	Charge Risk	Reservoir Risk	GCOS 🖵
Belleisle	0.50	0.75	0.75	28%

Lead Berwick

Lead Brooklyn

Scotian Basin Integration Atlas 2023 – CANADA – June 2023

Lead Liscomb

Scotian Basin Integration Atlas 2023 – CANADA – June 2023

Petrophysics

Well analog: Newburn-H23

Basin modeling results

Lead Oakfield

Parameter 🗾	Min/P90 🔻	Most likely/P50 🔻	Max/P10 💌
Apex of structure (mbsl)		-6460	
Closure depth (mbsl)	-6750	-7300	-7750
Closure area (sq.km)	27	81	113
Slab GRV (MMm3)	22569	68112	94699
GRV (MMm3)	3956	26013	43505

additional dip closure to the south (play type). Aquifer pressure is near approx. fracture closure pressure (red line).

Top seal failure risk (>25% trap COS) may require a "protected trap" where pressure is released at an updip "blown trap" (assuming sufficient **SSE** reservoir presence & connectivity).

modeling at Oakfield lead location

Volumetrics				
Parameter	-	Min/P90 💌	Most likely/P50 💌	Max/P10 💌
Apex of structure	(mbsl)		-6460	
Closure depth (mb	osl)	-6750	-7300	-7750
Closure area (sq.k	m)	27	81	113
Slab GRV (MMm3)		22569	68112	94699
GRV (MMm3)		3956	26013	43505
N/G		14%	18%	27%
PHIE		12%	18%	22%
Sg		50%	60%	70%
1/Bo		0.58	0.59	0.60
RF Oil		15%	20%	25%
1/Bg		377	385	392
RF Gas		65%	75%	85%
bbl/m3			6.28981	
cf / m3			35.31467	
STOIIP (MMbbl)		120	235	366
Prospective Resou	irces (MMbbl)	40	80	127
GIIP (Bcf)		2974	5778	8978
Prospective Resou	irces (Bcf)	2226	4317	6812
Geological Risks				
Lead Name	Trap Risk	Charge Risk	Reservoir Risk	GCOS 🖵
Oakfield	0.25	0.75	0.75	14%

P50 GIIP: 5778 Bcf & P50 OIIP: 235 MMbbl unrisked

Scotian Basin Integration Atlas 2023 – CANADA – June 2023

Jorda Lillion

volcanics

basement

shale

Lead Thorburn

Parameter	•	Min/P90	•	Most likely/P50	Max/P10
Apex of structure (mbsl)				-4100	
Closure depth (mbsl)		-43	00	-4600	-5500
Closure area (sq.km)			4	31	. 80
Slab GRV (MMm3)		18	35	15626	40199
GRV (MMm3)		2	20	5346	56330

Parameter	-	Min/P90	Most likely/P50 🔻	Max/P10 👻
Apex of structure	e (mbsl)		-4100	
Closure depth (m	nbsl)	-4300	-4600	-5500
Closure area (sq.	.km)	4	31	80
Slab GRV (MMm	3)	1835	15626	40199
GRV (MMm3)		220	5346	56330
N/G		28%	38%	48%
PHIE		12%	18%	22%
Shc		50%	60%	70%
1/Bo		0.490	0.500	0.510
RF Oil		15%	20%	25%
1/Bg		338	345	352
RF Gas		65%	75%	85%
bbl/m3			6.28981	
cf / m3			35.31467	
STOIIP (MMbbl))	30	99	217
Prospective Res	ources (MMł	12	39	87
GIIP (Bcf)		2533	8323	18272
Prospective Res	ources (Bcf)	1900	6235	13658
Geological Risks				
Lead Name	Tran Risk	Charge Rick	Peservoir Risk	ecos
		charge Kis		4603
Thorburn	0.50	0.50	0.75	19%

P50 GIIP: 8323 Bcf & P50 OIIP: 99 MMstb unrisked

PL. 6.12

Lead Piscatiqui

GDE MS3

~	Rollover	10 12	
5	Turtleback structure	Continent	a
	Sedimentation below salt canopy		
6	Autochtonous to parachtonous salt	pillars	
	Sandy slope fan - turbiditic infill (observed in 3D seismic / inferred from 2D	seismic)	d d
	Turbiditic channel (paleo-current mo	otion)	Marir
R.	Shelfal incised valley		
	Incised mounded countouritic drift / (observed in 3D seismic / inferred from 2D	sediment wave seismic)	1
->	Contour Current		

GDE MS4

- Post Megasequence erosion Alluvial to fluvial plain Fluvial plain to Upper deltaic plain (FRWs) Sandy delta front / mixed flat (Inner shelf) Sandy to shaly pro-delta / outer shelf Muddy outer carbonate shelf Barrier shelf edge Upper to mid slope
- Lower slope to basin
- SDR / outer margin

Volumes

Parameter	-	Min/P90 💌	Most likely/P50 🔽	Max/P10 💌
Apex of structure (mbsl)			-6460	
Closure depth (mbsl)		-6500	-6700	-6800
Closure area (sq.km)		20	39	65
Slab GRV (MMm3)		4848	9467	15706
GRV (MMm3)		2448	8663	14174

Volumetrics

Approx. WD: 2400 m Estimated TD: -6460 mbsl

Resources

Parameter 🔹	Min/P90 🔻	Most likely/P50 💌	Max/P10 💌
Apex of structure (mbsl)		-6460	
Closure depth (mbsl)	-6500	-6700	-6800
Closure area (sq.km)	20	39	65
Slab GRV (MMm3)	4848	9467	15706
GRV (MMm3)	2448	8663	14174
N/G	25%	30%	36%
PHIE	12%	18%	22%
Shc	50%	60%	70%
1/Bo	0.71	0.72	0.74
RF Oil	15%	20%	25%
1/Bg	363	370	378
RF Gas	65%	75%	85%
bbl/m3		6.28981	
cf / m3		35.31467	
STOIIP (MMbbl)	844	1281	2946
Prospective Resources (MMbbl)	188	322	481
GIIP (Bcf)	0.10	0.15	0.34
Prospective Resources (Bcf)	0.07	0.11	0.26
Geological Risks			

Lead Name 🖵	Trap Risk	Charge Risk	Reservoir Risk	GCOS 🚽
Piscatiqui	0.25	0.75	0.75	14%

P50 STOIIP: 1281 MMstb unrisked

Lead Seawolf

Parameter 🔹	Min/P90 💌	Most likely/P50	Max/P10 🔻
Apex of structure (mbsl)		-6025	
Closure depth (mbsl)	-6300	-6500	-6600
Closure area (sq.km)	20	39	65
Slab GRV (MMm3)	9596	18737	31085
GRV (MMm3)	4271	9821	14232

sufficient reservoir presence & connectivity).

Parameter 💌	Min/P90 🔽	Most likely/P50 💌	Max/P10 🔽
Apex of structure (mbsl)		-6025	
Closure depth (mbsl)	-6300	-6500	-6600
Closure area (sq.km)	20	39	65
Slab GRV (MMm3)	9596	18737	31085
GRV (MMm3)	4271	9821	14232
N/G	7%	15%	22%
PHIE	12%	18%	22%
Sg	50%	60%	70%
1/Во	0.84	0.86	0.88
RF Oil	15%	20%	25%
1/Bg	288	294	300
RF Gas	65%	75%	85%
bbl/m3		6.28981	
cf / m3		35.31467	
STOIIP (MMbbl)	381	639	965
Prospective Resources (MMbbl)	86	147	226
GIIP (Bcf)	129	216	327
Prospective Resources (Bcf)	96	161	245

Geological Risks

Lead Name 🖵	Trap Risk	Charge Risk	Reservoir Risk	GCOS 🖵
Seawolf	0.25	0.75	0.75	14%

P50 GIIP: 216 Bcf & P50 STOIIP: 639 MMstb unrisked

PL. 6.14

Lead Stonehouse

2000

0

location

Parameter	▼ Mi	in/P90 💌	Most likely/P50 💌	Max/P10
Apex of structure (mbsl)			-4420	
Closure depth (mbsl)		-4500	-4650	-4950
Closure area (sq.km)		22	244	977
Slab GRV (MMm3)		5060	56120	224710
GRV (MMm3)		1048	15419	198239
K 125 Depth Map (m)		NB GII	: Total Volume P represents the	of 37 tcf sum of a

Parameter	-	Min/P90 💌	Most likely/P50 💌	Max/P10
Apex of structure (mbsl)			-4420	
Closure depth (ml	bsl)	-4500	-4650	-4950
Closure area (sq.k	m)	22	244	977
Slab GRV (MMm3)		5060	56120	224710
GRV (MMm3)		1048	15419	198239
N/G		39%	55%	70%
PHIE		12%	18%	22%
Shc		50%	60%	70%
1/Bo		0.258	0.263	0.268
RF Oil		15%	20%	25%
1/Bg		288	294	300
RF Gas		65%	75%	85%
bbl/m3			6.28981	
cf / m3			35.31467	
STOIIP (MMbbl)		4	13	29
Prospective Resou	urces (MMbbl)	3	10	22
GIIP (Bcf)		10673	37113	82902
Prospective Resources (Bcf)		8002	27795	62255
Geological Risks				
Lead Name	Trap Risk	Charge Risk	Reservoir Risk	GCOS

Lead Name	Trap Risk	Charge Risk	Reservoir Risk	GCOS 🚽		
Stonehouse	0.50	0.75	0.50	19 %		

P50 GIIP: 37 Tcf unrisked

Petrophysics

anhydrite	argilaceous limestone
salt	marls
volcanics	carnalite salt/ clay
basement	sandst vfine
shale	sandst fine
claystone	sandst medium
silty to sandy sh.	sandst coarse
siltstone	
sandstone	im. peloid 开
calc. siltstone	lim.mudston
calc. sandstone	lim.wackestone
limestone	lime. pack
chalk	lime grain.
dolomite	🗐 lim. bioclastic 🤤

Well analog: Annapolis-G24

Basin modeling results

Lead Weymouth Deep

• Newburn H-23 Post Megasequence erosion Continental Alluvial to fluvial plain Fluvial plain to Upper deltaic plain (FRWs) Sandy delta front / mixed flat (Inner shelf) Sandy to shaly pro-delta / outer shelf Weymouth A-4 Muddy outer carbonate shelf Barrier shelf edge Upper to mid slope Lower slope to basin SDR / outer margin Rollover Turtleback structure Aspy D-11 Sedimentation below salt canopy Autochtonous to parachtonous salt pillars Sandy slope fan - turbiditic infill (observed in 3D seismic / inferred from 2D seismic) **GDE MS2** S Turbiditic channel (paleo-current motion) 2 Same Shelfal incised valley Seal: MS3 TST (K130) Incised mounded countouritic drift / sediment wave (observed in 3D seismic / inferred from 2D seismic) Contour Current

<u>Volumes</u>							
Parameter	Min/P	90 🔻 Mo	ost Likely/P50 🔽	Max/P10 🔻			
Apex of structure (mbsl)			-6120	1			
Closure depth (mbsl)	-	6200	-6400	-6500			
Closure area (sq.km)		8	103	146			
Slab GRV (MMm3)		2268	28864	40758			
GRV (MMm3)		1851	10381	. 25585			
K 125 Depth Map (m) 10 km		Approx Estimat	. WD: 1700 m red TD: -6120 r	ı nbsl			

,	
I-way dip closed, one salt and dip dependant	
play type).	
Aquifer pressure is near approx. fracture closure	
pressure (red line).	
op seal failure risk (>75% trap COS) may require	

sw a "protected trap" where pressure is released at an updip "blown trap" (assuming sufficient reservoir presence & connectivity).

Pore Pressure (MPa) from **Basin modeling at Deep** Weymouth lead location

Volumetrics	Resources				
Parameter 🗾	Min/P90 💌	Most Likely/P50 💌	Max/P10 💌		
Apex of structure (mbsl)		-6120			
Closure depth (mbsl)	-6200	-6400	-6500		
Closure area (sq.km)	8	103	146		
Slab GRV (MMm3)	2268	28864	40758		
GRV (MMm3)	1851	10381	25585		
N/G	22%	31%	38%		
PHIE	12%	18%	22%		
Shc	50%	60%	70%		
1/Bo	0.598	0.610	0.622		
RF Oil	15%	20%	25%		
1/Bg	392	400	408		
RF Gas	65%	75%	85%		
bbl/m3		6.28981			
cf / m3		35.31467			
STOIIP (MMbbl)	30	99	217		
Prospective Resources (MMbbl)	12	39	87		
GIIP (Bcf)	2168	4350	7399		
Prospective Resources (Bcf)	1618	3246	5595		

Geological Risks

Resources

PL. 6.15