Research Portal

Displaying 11 – 16 of 16 results

Filters

Geoscience » Source Rock & Depositional Environment

Attenuation of Petroleum Generation Characteristics by the Sulfurization of Organic Matter in Westphaflan Carboniferous Lacustrine Source Rocks (A Geochemical Study of Potential Marine Incursions)

October 2017 – May 2019

This project creates geochemical diagnostic tools that can be applied to potential source rocks of differing ages in the Maritimes Basin. These tools help build a more accurate interpretation of the evolution of the basin.

Testing of a New Turbine Blade Design and Blade Materials

July 2018 – May 2019

There’s not yet a standardized, optimal way of extracting power from tidal currents. That’s why many tidal industry technologies are currently being tested around the world.

Geoscience » Source Rock & Depositional Environment

Mid Cretaceous Sand Supply to Offshore SW Nova Scotia: Tectonic Diversion of Labrador Rivers during Naskapi Member Deposition

September 2015 – September 2017

This study tests the hypothesis that tectonic diversion of Labrador rivers during the Aptian resulted in sand supply through the Bay of Fundy to the Shelburne sub-basin, allowing shales to accumulate farther east in the Scotian Basin.

Geoscience » Play Fairway Analyses Atlases 2010–Present

Sydney Basin Play Fairway Analysis Atlas (2017)

July 2017

The objectives of this Play Fairway Analysis are to build a detailed and comprehensive understanding of the petroleum systems of the Sydney Basin and provide a resource evaluation based on the petroleum systems assessment.  The study concludes there is an effective petroleum system charged by mai

FORCE Data Management System/User Interface

April – June 2017

This project defined a Data Management System (DMS) and user interface solution for use by FORCE.

Impact of Channel Blockage on the Performance of Axial and Cross-Flow Hydrokinetic Turbines

April 2017

This work investigates the effect of channel blockage on how axial and cross-flow turbines perform. The objective is to fill a gap in the literature on suitable blockage corrections for cross-flow turbines.