Research Portal

Displaying 1 – 10 of 12 results

Filters

Drones and Drifters – The Great Pumpkin Race

October 2016 – July 2017

This project tested and developed a new low-cost approach to collecting oceanographic measurements for use in tidal initial site assessments. The plan combines one of the oldest tools in oceanography, the drifter, with one of the newest, the drone.

Tidal Turbine Marine Life Interaction Study: Fish

May 2016 – May 2017

This study at Dalhousie University’s Aquatron test tank monitored the behaviour of striped bass in the presence of an active tidal turbine.  The research drew on expertise and experience from different parts of Canada and Europe over a one year project period.

Use of Bottom-Mounted Hydro-Acoustic Sonar to Assess Fish Presence and Vertical Distribution at the FORCE In-Stream Tidal Turbine Test Site in Minas Passage

May 2016 – April 2017

To better understand fish use of the Fundy Ocean Research Center for Energy (FORCE) site and their potential for interaction with in-stream tidal devices, this study examined how fish density and vertical distribution varied with respect to environmental factors, in particular tidal stage and tim

Marine Fish Monitoring Program Tidal Energy Demonstration Site – Minas Passage

May 2016 – March 2017

This is the final report submitted to the Fundy Ocean Research Center on Energy (FORCE) for the Marine Fish Monitoring Program Tidal Energy Demonstration Site – Minas Passage.

Advancing Tidal Energy Turbine Operations through High Fidelity Tug Propulsion and Control Simulation Software

November 2016 – March 2017

The project objective was to develop a numerical model of a tug boat and its propulsion system to accurately predict its dynamic behaviour in turbulent tidal flows.

Environmental Effects Monitoring Project

January 2016 – January 2017

FORCE developed an Environmental Effects Monitoring Program (EEMP) to study five major subject areas: fish, marine mammals, lobster, marine noise and seabirds. The EEMP was designed to be adaptive in nature.

Impacts of Tidal Energy Extraction on Sediment Dynamics in Minas Basin, Bay of Fundy

February 2010 – December 2012

Researchers developed a numerical hydrodynamic and sediment transport model for Minas Basin in the Bay of Fundy, focusing on the sediment dynamics of the tidal inlets and flats.

Effects of Energy Extraction on Sediment Dynamics in Intertidal Ecosystems of the Minas Basin

January 2010 – May 2012

This project assessed how the dynamics of sedimentation change when energy is extracted from a macro-tidal system. The differences in tidal prism and energy between neap and spring tidal cycles were used as a proxy for energy extraction by in-stream tidal power devices.

Assessing the Far Field Effects of Tidal Power Extraction on the Bay of Fundy, Gulf of Maine and Scotian Shelf

January 2010 – April 2012

The Bay of Fundy and Gulf of Maine system has a natural resonant period very close to the main semi-diurnal lunar tide. This results in the world’s highest tides and strong tidal currents in the Bay of Fundy, particularly in the Minas Channel and Minas Basin.

Assessment of Hydrodynamic Impacts throughout the Bay of Fundy and Gulf of Maine due to Tidal Energy Extraction by Tidal Lagoons

January 2010 – December 2011

The researchers extended existing hydrodynamic models of tidal flows in the Bay of Fundy to simulate the presence and operation of a tidal lagoon project located in the Minas Basin.