Research Portal

Displaying 1 – 10 of 12 results

Filters

Modeling of Electric Boats as Energy Storage

July 2018 – September 2020

Electric boats have the potential to act as “energy storage wrapped in a boat”.

Analysis Framework for Long-Term and Cumulative Effects Monitoring

October 2018 – September 2020

This project created a framework for testing in-stream tidal turbine effects on specific marine species populations. The framework provides the basis for future assessment of far-field and cumulative environmental effects.

Geoscience » Source Rock & Depositional Environment

Predictive Modeling of Sandstone Reservoir Distribution in the SW Scotian Basin

March 2018 – April 2020

The SW Scotian Basin is considered an under-explored passive margin sedimentary basin, however, it is also the most probable location to find oil on the Scotian Margin.

Feasibility Study: Tidal Sector Service Barge/Drydock

April – November 2018

The study investigates the feasibility of developing a generic, shared-use, multi-function turbine transport deployment and retrieval barge/drydock for use by the Nova Scotia tidal energy sector.

Analysis of Tidal Turbine Mooring Systems in Turbulent Flows Applying the (Wind Industry) FAST Simulation Tool and DSA ProteusDS Software

March – September 2018

For floating tidal turbine platforms, the turbine forces and resulting platform motions have a direct impact on the lifetime of its moorings and cables. This means the tidal sector must predict accurate tidal turbine loading on floating platforms to determine mooring life and cable longevity.

Using Radar to Evaluate Seabird Abundance and Habitat Use at the Fundy Ocean Research Center for Energy Site near Parrsboro, Nova Scotia

April – September 2018

Shore-based seabird surveys conducted at the Fundy Ocean Research Center for Energy (FORCE) in Parrsboro, NS, determine abundance, habitat use and potential risk to seabirds at the site.

Using Dry Ports to Support Nova Scotia’s Tidal Industry

March – June 2018

This study investigates two Nova Scotia “dry ports” and their potential in supporting the Bay of Fundy region’s emergent tidal energy industry. The term ‘dry port’ refers to a port where the harbour bottom is mainly exposed at low tide.

Tidal Energy: Strategic Environmental Assessment – Bay of Fundy (Phase I)

April 2018

This Strategic Environmental Assessment (SEA) provides advice on whether, when and under what conditions tidal energy demonstration and commercial projects should be allowed in the Bay of Fundy.

Assessment of Hydrodynamic Impacts throughout the Bay of Fundy and Gulf of Maine due to Tidal Energy Extraction by Tidal Lagoons

January 2010 – December 2011

The researchers extended existing hydrodynamic models of tidal flows in the Bay of Fundy to simulate the presence and operation of a tidal lagoon project located in the Minas Basin.

Geoscience » Seismic & Marine Sound

Feasibility of a Marine Vibroseis System to Minimize Potential Impacts of Seismic Surveying on Commercial Marine Invertebrates

May 2010 – May 2011

Marine vibroseis (a sound generating system that uses a large oscillating mass to emit a range of frequencies) offers an alternative to air-gun seismic sources and may have fewer environmental effects on marine biota.