Research Portal

Displaying 1 – 6 of 6 results

Filters

Geoscience » Georges Bank Research & Data

Science and Socio-economic Review of the Georges Bank Prohibition Area 2020-2021

June – December 2021

Georges Bank is a large submarine platform located at the edge of the Atlantic continental shelf between Cape Cod and Nova Scotia. The Georges Bank Prohibition Area covers a significant portion of Georges Bank and is located on the Canadian side of the Canada-United States maritime boundary.

Going with the Flow II: Using Drifters to Address Uncertainties in the Spatial Variation of Tidal Flows

October 2017 – June 2018

Drifters are one of the oldest, simplest and most reliable methods for measuring ocean currents. Drifters also provide a simple, low risk platform from which to gather acoustic information along flow streamlines or ‘drift tracks’.

Nova Scotia Small Tidal Test Centre: Gap Analysis and Business Case

November 2017 – March 2018

As the tidal energy industry develops, there is increasing interest in the prospects for small-scale tidal energy development. Building small-scale tidal energy installations has promise given the number of locations where they can be used.

Passive Acoustic Monitoring of Cetacean Activity Patterns and Movements Pre- and Post-deployment of TISEC devices in Minas Passage

June 2011 – July 2013

This project aimed to conduct pre- and post- in-stream tidal energy device deployment assessments of marine mammal activity and to assess the potential risk for interaction with turbine infrastructure.

Community and Business Toolkit for Tidal Energy Development

November 2011 – March 2013

This toolkit covers the science, technology, business and community aspects of tidal energy development in Nova Scotia, effectively integrating the applied, natural and social sciences. It can serve as a model for future applied interdisciplinary work on tidal energy and marine renewables.

Cross Coupling between Device Level CFD and Oceanographic Models Applied to Multiple TISECs in Minas Passage

October 2011 – January 2013

This project aimed to develop a link between oceanographic computer models and Computational Fluid Dynamics (CFD) models in order to improve state-of-the-art modelling techniques used for resource assessments and tidal turbine siting for both single and multiple in-stream tidal energy devices.