Research Portal

Displaying 1 – 10 of 13 results

Filters

Renewable Energy » Tidal Resource Characterization and Modelling

How Does Sound Travel in High Energy Environments? Effectiveness of Acoustic Monitoring Systems and Turbine Audibility Assessment

April 2017 – December 2020

The researchers are designing and implementing a long-term acoustic monitoring program to support tidal energy development in the Bay of Fundy. Specialized acoustic instrumentation was deployed for a two-month period in Grand Passage to advance understanding how turbulence affects the ability to

Renewable Energy » Tidal Resource Characterization and Modelling

Reducing Costs of Tidal Energy through a Comprehensive Characterization of Turbulence in Minas Passage

October 2017 – March 2020

Turbulence is a significant issue at every site being considered for in-stream tidal energy development.

Renewable Energy » Tidal Resource Characterization and Modelling

Turbine Wake Characterization

November 2017 – March 2019

Turbine wake characterization is a key endeavour to the development of in-stream tidal turbine arrays.  In a sense, a turbine’s footprint includes its wake, wherein flow speeds are less and turbulence is elevated compared to the ambient surroundings.  It is thus desired to not just delineate wake

Renewable Energy » Tidal Resource Characterization and Modelling

Going with the Flow II: Using Drifters to Address Uncertainties in the Spatial Variation of Tidal Flows

October 2017 – June 2018

Drifters are one of the oldest, simplest and most reliable methods for measuring ocean currents. Drifters also provide a simple, low risk platform from which to gather acoustic information along flow streamlines or ‘drift tracks’.

Renewable Energy » Socio-economic and Traditional Use » Socioeconomic Studies

Nova Scotia Small Tidal Test Centre: Gap Analysis and Business Case

November 2017 – March 2018

As the tidal energy industry develops, there is increasing interest in the prospects for small-scale tidal energy development. Building small-scale tidal energy installations has promise given the number of locations where they can be used.

Renewable Energy » Tidal Resource Characterization and Modelling

Turbulence Dissipation Rates from Horizontal Velocity Profiles at Mid-Depth in Fast Tidal Flows

December 2017

This study characterizes the turbulence in a tidal channel in the Bay of Fundy that has been identified for development as a tidal power resource.

Renewable Energy » Tidal Resource Characterization and Modelling

High-Resolution Numerical Model Resource Assessment of Minas Passage, Bay of Fundy

January 2017

Two numerical models developed by the Acadia Tidal Energy Institute are described. The models simulate the tidal flow in the Bay of Fundy, and in particular the Minas Passage. The models have different grid resolution, one suitable for site assessment and one suitable for resource assessment.

Renewable Energy » Tidal Resource Characterization and Modelling

Turbulence and Bottom Stress in Minas Passage and Grand Passage

September 2011 – February 2015

This project aimed to investigate turbulence and bottom stress at two sites being targeted for in-stream tidal power development in Nova Scotia: Minas Passage in the Upper Bay of Fundy and Grand Passage, located between Brier and Long Island in the lower Bay of Fundy.

Renewable Energy » Tidal Resource Characterization and Modelling

Passive Acoustic Monitoring of Cetacean Activity Patterns and Movements Pre- and Post-deployment of TISEC devices in Minas Passage

June 2011 – July 2013

This project aimed to conduct pre- and post- in-stream tidal energy device deployment assessments of marine mammal activity and to assess the potential risk for interaction with turbine infrastructure.

Renewable Energy » Socio-economic and Traditional Use » Socioeconomic Studies

Community and Business Toolkit for Tidal Energy Development

November 2011 – March 2013

This toolkit covers the science, technology, business and community aspects of tidal energy development in Nova Scotia, effectively integrating the applied, natural and social sciences. It can serve as a model for future applied interdisciplinary work on tidal energy and marine renewables.