Research Portal

Displaying 1 – 8 of 8 results

Filters

Analysis Framework for Long-Term and Cumulative Effects Monitoring

October 2018 – September 2020

This project created a framework for testing in-stream tidal turbine effects on specific marine species populations. The framework provides the basis for future assessment of far-field and cumulative environmental effects.

Modeling of Electric Boats as Energy Storage

July 2018 – September 2020

Electric boats have the potential to act as “energy storage wrapped in a boat”.

Geoscience » Source Rock & Depositional Environment

Predictive Modeling of Sandstone Reservoir Distribution in the SW Scotian Basin

March 2018 – April 2020

The SW Scotian Basin is considered an under-explored passive margin sedimentary basin, however, it is also the most probable location to find oil on the Scotian Margin.

Feasibility Study: Tidal Sector Service Barge/Drydock

April – November 2018

The study investigates the feasibility of developing a generic, shared-use, multi-function turbine transport deployment and retrieval barge/drydock for use by the Nova Scotia tidal energy sector.

Using Dry Ports to Support Nova Scotia’s Tidal Industry

March – June 2018

This study investigates two Nova Scotia “dry ports” and their potential in supporting the Bay of Fundy region’s emergent tidal energy industry. The term ‘dry port’ refers to a port where the harbour bottom is mainly exposed at low tide.

Turbulence and Bottom Stress in Minas Passage and Grand Passage

September 2011 – February 2015

This project aimed to investigate turbulence and bottom stress at two sites being targeted for in-stream tidal power development in Nova Scotia: Minas Passage in the Upper Bay of Fundy and Grand Passage, located between Brier and Long Island in the lower Bay of Fundy.

Passive Acoustic Monitoring of Cetacean Activity Patterns and Movements Pre- and Post-deployment of TISEC devices in Minas Passage

June 2011 – July 2013

This project aimed to conduct pre- and post- in-stream tidal energy device deployment assessments of marine mammal activity and to assess the potential risk for interaction with turbine infrastructure.

Cross Coupling between Device Level CFD and Oceanographic Models Applied to Multiple TISECs in Minas Passage

October 2011 – January 2013

This project aimed to develop a link between oceanographic computer models and Computational Fluid Dynamics (CFD) models in order to improve state-of-the-art modelling techniques used for resource assessments and tidal turbine siting for both single and multiple in-stream tidal energy devices.