Research Portal

Displaying 1 – 7 of 7 results

Filters

Petroleum Geoscience » Source Rock & Depositional Environment

Microbial Genomics for De-Risking Offshore Oil and Gas Exploration in Nova Scotia

April 2016 – March 2021

The purpose of this $6.5M project is to develop, validate and deploy different genomics-based bioassay tools for offshore prospecting on the Scotian Slope.

Petroleum Geoscience » Source Rock & Depositional Environment

Predictive Modelling of Sandstone Reservoir Quality in the Scotian Basin

May 2016 – December 2018

This project uses existing knowledge of inferred drainage basin areas and paleoclimate to model multiple river inputs to the Scotian Basin. The modelled sedimentary succession is compared with actual sediment thicknesses in the basin.

Renewable Energy » Tidal Resource Characterization and Modelling

Drones and Drifters – The Great Pumpkin Race

October 2016 – July 2017

This project tested and developed a new low-cost approach to collecting oceanographic measurements for use in tidal initial site assessments. The plan combines one of the oldest tools in oceanography, the drifter, with one of the newest, the drone.

Petroleum Geoscience » Source Rock & Depositional Environment

Sydney Basin and Nova Scotia Forensic Geochemistry

May 2016 – March 2017

Sydney Basin and Nova Scotia Forensic Geochemistry

Renewable Energy » Tidal Resource Characterization and Modelling

Turbulence in Grand Passage Nova Scotia: Measures of Intermittency

April – December 2016

Turbulence research is very important to advancing the in-stream tidal energy sector, however turbulence in general is not well understood.  Measurement at prospective turbine locations is essential prior to development, given the high degree of spatial variability between sites.

Petroleum Geoscience » Source Rock & Depositional Environment

Direct Hydrocarbon Indicator (DHI) Mapping, Offshore Nova Scotia

January – May 2016

This project reviewed existing seismic data to identify and catalogue Direct Hydrocarbon Indicators (DHIs) in offshore Nova Scotia, particularly in the Laurentian and Georges Bank Sub-basins.

Renewable Energy » Tidal Resource Characterization and Modelling

Spectral and Structure Function Estimates of Turbulence Dissipation Rates in a High Flow Tidal Channel Using Broadband ADCPs

January 2016

Spectral and structure function methods are implemented to compute the dissipation rate, ε, from broadband, diverging-beam, acoustic Doppler current profiler (ADCP) data collected at four sites in a high-flow tidal channel.